Chapter 2: Problem 111
If \(z=x-\) iy and \(z^{(1 / 3)}=p+i\) q then \(\left[\\{(x / p)+(y / q)\\} /\left(p^{2}+q^{2}\right)\right]\) (a) 2 (b) \(-1\) (c) 1 (d) \(-2\)
Chapter 2: Problem 111
If \(z=x-\) iy and \(z^{(1 / 3)}=p+i\) q then \(\left[\\{(x / p)+(y / q)\\} /\left(p^{2}+q^{2}\right)\right]\) (a) 2 (b) \(-1\) (c) 1 (d) \(-2\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe small positive integer ' \(n\) ' for which \((1+i)^{2 n}=(1-i)^{2 n}\) is \(\begin{array}{lll}\text { (a) } 4 & \text { (b) } 8 & \text { (c) } 2\end{array}\) (d) 12
If \(1, \mathrm{w}\) and \(\mathrm{w}^{2}\) are cube root of 1 then \((1-\mathrm{w})\left(1-\mathrm{w}^{2}\right)\) \(\left(1-\mathrm{w}^{4}\right)\left(1-\mathrm{w}^{8}\right)=\) (a) 16 (b) 8 (c) 9 (d) 64
Let \(\alpha, \beta\) be real and \(z\) be a complex number if \(z^{2}+\alpha z+\beta=0\) has two distinct roots on the line \(\operatorname{Re}(z)=1\) then it is necessary that (a) \(\beta \in(-1,0)\) (b) \(|\beta|=1\) (c) \(\beta \in[1, \infty)\) (d) \(\beta \in(0,1)\)
If the imaginary part of \([(2 z-3) /(i z+1)]\) is \(-2\) then the locus of the point representing \(z\) in the complex plane is (a) a circle (b) a straight line (c) a parabola (d) an ellipse
If \(z=\left[(1+7 i) /(2-i)^{2}\right]\) then the polar form of \(z\) is (a) \(\sqrt{2}[\cos (3 \pi / 4)+\mathrm{i} \sin (3 \pi / 4)]\) (b) \(\sqrt{2}[\cos (\pi / 4)+\mathrm{i} \sin (\pi / 4)]\) (c) \(\sqrt{2}[\cos (7 \pi / 4)+\mathrm{i} \sin (7 \pi / 4)]\) (d) \(\sqrt{2}[\cos (5 \pi / 4)+\mathrm{i} \sin (5 \pi / 4)]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.