Chapter 2: Problem 111
If \(z=x-\) iy and \(z^{(1 / 3)}=p+i\) q then \(\left[\\{(x / p)+(y / q)\\} /\left(p^{2}+q^{2}\right)\right]\) (a) 2 (b) \(-1\) (c) 1 (d) \(-2\)
Chapter 2: Problem 111
If \(z=x-\) iy and \(z^{(1 / 3)}=p+i\) q then \(\left[\\{(x / p)+(y / q)\\} /\left(p^{2}+q^{2}\right)\right]\) (a) 2 (b) \(-1\) (c) 1 (d) \(-2\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(x_{n}=\cos \left(\pi / 2^{n}\right)+i \sin \left(\pi / 2^{n}\right)\) then \(x_{1} x_{2} x_{3} \ldots \ldots \infty=\) (a) - i (b) \(-1\) (c) (d) 1
The equation \(|z-i|+|z+i|=k\) represent an ellipse if \(K=\) (a) 1 (b) 2 (c) 4 (d) \(-1\)
If \(Z\) is complex number. Then the locus of the point \(Z\) satisfying arg \([(z-i) /(z+i)]=(\pi / 4)\) is a (a) Circle with center \((-1,0)\) and radius \(\sqrt{2}\) (b) Circle with center \((0,0)\) and radius \(\sqrt{2}\) (c) Circle with center \((0,1)\) and radius \(\sqrt{2}\) (d) Circle with center \((1,1)\) and radius \(\sqrt{2}\)
The complex numbers \(\sin x+i \cos 2 x\) and \(\cos x-i \sin 2 x\) are conjugate of each other for (a) \(\mathrm{x}=\mathrm{k} \pi, \mathrm{k} \in \mathrm{z}\) (b) \(x=0\) (c) \(\mathrm{x}=[\mathrm{k}+(1 / 2)] \pi, \mathrm{k} \in \mathrm{z}\) (d) no value of \(\mathrm{x}\)
If \(\mathrm{z}_{1}=2-\mathrm{i}\) and \(\mathrm{z}_{2}=1+\mathrm{i}\) then \(\left|\left[\left(z_{1}-z_{2}+1\right) /\left(z_{1}+z_{2}+i\right)\right]\right|=\) (a) \(\sqrt{(5 / 3)}\) (b) \(\sqrt{(3 / 5)}\) (c) \(\sqrt{(4 / 5)}\) (d) \(\sqrt{(5 / 4)}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.