Chapter 2: Problem 117
The small positive integer ' \(n\) ' for which \((1+i)^{2 n}=(1-i)^{2 n}\) is \(\begin{array}{lll}\text { (a) } 4 & \text { (b) } 8 & \text { (c) } 2\end{array}\) (d) 12
Chapter 2: Problem 117
The small positive integer ' \(n\) ' for which \((1+i)^{2 n}=(1-i)^{2 n}\) is \(\begin{array}{lll}\text { (a) } 4 & \text { (b) } 8 & \text { (c) } 2\end{array}\) (d) 12
All the tools & learning materials you need for study success - in one app.
Get started for freeIf the imaginary part of \([(2 z-3) /(i z+1)]\) is \(-2\) then the locus of the point representing \(z\) in the complex plane is (a) a circle (b) a straight line (c) a parabola (d) an ellipse
The inequality \(|z-4|<|z-2|\) represent the region given by (a) \(\operatorname{Re}(z)>0\) (b) \(\operatorname{Re}(z)<0\) (c) \(\operatorname{Re}(z)>2\) (d) \(\operatorname{Re}(z)>3\)
If cube root of unity are \(1, w, w^{2}\) then the roots of the equation \((\mathrm{x}-1)^{3}+8=0\) are (a) \(-1,-1,-1\) (b) \(-1,-1+2 \mathrm{w},-1-2 \mathrm{w}^{2}\) (c) \(-1,1+2 \mathrm{w}, 1+2 \mathrm{w}^{2}\) (d) \(-1,1-2 \mathrm{w},+1-2 \mathrm{w}^{2}\)
For complex numbers \(z_{1}, z_{2}\) if \(\left|z_{1}\right|=12\) and \(\left|z_{2}-3-4 i\right|=5\) then the minimum value \(\left|\mathrm{z}_{1}-\mathrm{z}_{2}\right|\) is (a) 0 (b) 2 (c) 7 (d) 17
It \(\mathrm{z}^{2}+\mathrm{z}+1=0\) where \(\mathrm{z}\) is a complex number, then the value of \([z+(1 / z)]^{2}+\left[z^{2}+\left(1 / z^{2}\right)\right]^{2}+\left[z^{3}+\left(1 / z^{3}\right)\right]^{2}+\ldots\) \(+\left[z^{6}+\left(1 / z^{6}\right)\right]^{2}\) is (a) 18 (b) 54 (c) 6 (d) 12
What do you think about this solution?
We value your feedback to improve our textbook solutions.