Chapter 2: Problem 117
The small positive integer ' \(n\) ' for which \((1+i)^{2 n}=(1-i)^{2 n}\) is \(\begin{array}{lll}\text { (a) } 4 & \text { (b) } 8 & \text { (c) } 2\end{array}\) (d) 12
Chapter 2: Problem 117
The small positive integer ' \(n\) ' for which \((1+i)^{2 n}=(1-i)^{2 n}\) is \(\begin{array}{lll}\text { (a) } 4 & \text { (b) } 8 & \text { (c) } 2\end{array}\) (d) 12
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(a=\cos \alpha+i \sin \alpha, b=\cos \beta+i \sin \beta c=\cos \gamma+i \sin \gamma\) and \((a / b)+(b / c)+(c / a)=1\) then \(\cos (\alpha-\beta)+\cos (\beta-\gamma)+\cos (\gamma-\alpha)=\) (a) \((3 / 2)\) (b) \(-(3 / 2)\) (c) 0 (d) 1
If \(z\) is a complex number satisfying \(|z-\operatorname{iRe}(z)|=|z-\operatorname{Im}(z)|\) then \(\mathrm{z}\) lies on (a) \(\mathrm{y}=\mathrm{x}-1\) (b) \(\mathrm{y}=\pm \mathrm{x}\) (c) \(\mathrm{y}=\mathrm{x}+1\) (d) \(\mathrm{y}=-\mathrm{x}+1\)
If \(1, \mathrm{w}\) and \(\mathrm{w}^{2}\) are cube root of 1 then \((1-\mathrm{w})\left(1-\mathrm{w}^{2}\right)\) \(\left(1-\mathrm{w}^{4}\right)\left(1-\mathrm{w}^{8}\right)=\) (a) 16 (b) 8 (c) 9 (d) 64
The inequality \(|z-4|<|z-2|\) represent the region given by (a) \(\operatorname{Re}(z)>0\) (b) \(\operatorname{Re}(z)<0\) (c) \(\operatorname{Re}(z)>2\) (d) \(\operatorname{Re}(z)>3\)
If \(z=x+\) iy, \(x, y \in R\) and \(|x|+|y| \leq k|z|\) then \(k=\) (a) 1 (b) \(\sqrt{2}\) (c) \(\sqrt{3}\) (d) \(\sqrt{4}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.