Chapter 2: Problem 119
The number of complex numbers \(z\) such that \(|z-1|\) \(=|z+1|=|z-i|\) equal (a) 0 (b) 1 (c) 2 (d) \(\infty\)
Chapter 2: Problem 119
The number of complex numbers \(z\) such that \(|z-1|\) \(=|z+1|=|z-i|\) equal (a) 0 (b) 1 (c) 2 (d) \(\infty\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(a=\cos \alpha+i \sin \alpha, b=\cos \beta+i \sin \beta c=\cos \gamma+i \sin \gamma\) and \((a / b)+(b / c)+(c / a)=1\) then \(\cos (\alpha-\beta)+\cos (\beta-\gamma)+\cos (\gamma-\alpha)=\) (a) \((3 / 2)\) (b) \(-(3 / 2)\) (c) 0 (d) 1
Let \(z_{1}\) and \(z_{2}\) be two roots of equation \(z^{2}+a z+b=0 . Z\) is complex number. Assume that origin, \(\mathrm{z}_{1}\) and \(\mathrm{z}_{2}\) from an equilateral triangle then (a) \(\mathrm{a}^{2}=2 \mathrm{~b}\) (b) \(\mathrm{a}^{2}=3 \mathrm{~b}\) (c) \(a^{2}=4 b\) (b) \(a^{2}=b\)
lt \(z\) be a complex number and \(|z+3|<8 .\) Then the value of \(|z-2|\) lies in (a) \([-2,13]\) (b) \([0,13]\) (c) \([2,13]\) (d) \([-13,2]\)
If \(z=x+i y, x, y \in R\) and \(3 x+(3 x-y) i=4-6 i\) then \(z=\) (a) \((4 / 3)+\mathrm{i} 10\) (b) \((4 / 3)-\mathrm{i} 10\) (c) \([(-4) / 3]+\mathrm{i} 10\) (d) \([(-4) / 3]-\mathrm{i} 10\)
If \(|z|=1\) and \(w=[(z-1) /(z+1)](z \neq-1)\) then \(\operatorname{Re}(w)=\) (a) 0 (b) \(\left[1 /\left(|z+1|^{2}\right)\right]\) (c) \(\left[1 /\left(|z+1|^{3}\right)\right]\) (d) \(\left[\sqrt{2} /\left(|\mathrm{z}+1|^{2}\right)\right]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.