Chapter 2: Problem 119
The number of complex numbers \(z\) such that \(|z-1|\) \(=|z+1|=|z-i|\) equal (a) 0 (b) 1 (c) 2 (d) \(\infty\)
Chapter 2: Problem 119
The number of complex numbers \(z\) such that \(|z-1|\) \(=|z+1|=|z-i|\) equal (a) 0 (b) 1 (c) 2 (d) \(\infty\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \([\\{(1+i) x-2 i\\} /(3+i)]+[\\{(2-3 i) y+i\\} /(3-i)\\}]=i\) then \((\mathrm{x}, \mathrm{y})=\) (a) \((3,1)\) (b) \((3,-1)\) (c) \((-3,1)\) (d) \((-3,-1)\)
For any integer \(\mathrm{n}, \arg \left[(\sqrt{3}+\mathrm{i})^{4 n+1} /(1-\mathrm{i} \sqrt{3})^{4 \mathrm{n}}\right]=\) (a) \((\pi / 3)\) (b) \((\pi / 6)\) (c) \((2 \pi / 3)\) (d) \((5 \pi / 6)\)
If \(\mathrm{a}=\cos (2 \pi / 7)+\mathrm{i} \sin (2 \pi / 7)\) then the quadratic equation whose roots are \(\alpha=\mathrm{a}+\mathrm{a}^{2}+\mathrm{a}^{4}\) and \(\beta=\mathrm{a}^{3}+\mathrm{a}^{5}+\mathrm{a}^{6}\) is (a) \(x^{2}-x+2\) (b) \(x^{2}+x-2\) (c) \(x^{2}-x-2\) (d) \(x^{2}+x+2\)
If \(Z=[(4+3 i) /(5-3 i)]\) then \(Z^{-1}=\) (a) \((11 / 25)-(27 / 25) \mathrm{i}\) (b) \([(-11) / 25)]-(27 / 25) \mathrm{i}\) (c) \([(-11) / 25)]+(27 / 25) \mathrm{i}\) (d) \((11 / 25)+(27 / 25) \mathrm{i}\)
If \(\mathrm{x}>1\) then the square roots of \(1-\sqrt{\left(\mathrm{x}^{2}-1\right) \mathrm{i}}\) (a) \(\pm[\sqrt{\\{}(\mathrm{x}+1) / 2\\}-\mathrm{i} \sqrt{\\{}(\mathrm{x}-1) / 2\\}]\) (b) \(\pm[\sqrt{\\{}(\mathrm{x}+1) / 2\\}+\mathrm{i} \sqrt{\\{}(\mathrm{x}-1) / 2\\}]\) (c) \(\pm[\sqrt{\\{}(\mathrm{x}-1) / 2\\}-\mathrm{i} \sqrt{\\{}(\mathrm{x}+1) / 2\\}]\) (d) \(\pm[\sqrt{\\{}(\mathrm{x}-1) / 2\\}+\mathrm{i} \sqrt{\\{}(\mathrm{x}+1) / 2\\}]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.