Chapter 2: Problem 122
\((1+i)(2+a i)+(2+3 i)(3+i)=x+i y, x, x y \in R\) and \(x=y\) then \(\mathrm{a}=\) (a) 5 (b) \(-4\) (c) \(-5\) (d) 4
Chapter 2: Problem 122
\((1+i)(2+a i)+(2+3 i)(3+i)=x+i y, x, x y \in R\) and \(x=y\) then \(\mathrm{a}=\) (a) 5 (b) \(-4\) (c) \(-5\) (d) 4
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are integers, not all equal, and \(\mathrm{w}\) is a cube root of unity \((\mathrm{w} \neq 1)\) Then the minimum value of \(\left|\mathrm{a}+\mathrm{bw}+\mathrm{cw}^{2}\right|\) is (a) 0 (b) 1 (c) \((\sqrt{3} / 2)\) (d) \((1 / 2)\)
The equation \(|z-i|+|z+i|=k\) represent an ellipse if \(K=\) (a) 1 (b) 2 (c) 4 (d) \(-1\)
If \(\mathrm{f}(\mathrm{x})=4 \mathrm{x}^{5}+5 \mathrm{x}^{4}-8 \mathrm{x}^{3}+5 \mathrm{x}^{2} 4 \mathrm{x}-34 \mathrm{i}\) and \(\mathrm{f}[(-1+\sqrt{3} \mathrm{i}) / 2]=\mathrm{a}+\mathrm{ib}\) then \(\mathrm{a}: \mathrm{b}=\) (a) \(1: 2\) (b) \(-2: 1\) (c) \(17: 1\) (d) \(-17: 1\)
For complex numbers \(z_{1}, z_{2}\) if \(\left|z_{1}\right|=12\) and \(\left|z_{2}-3-4 i\right|=5\) then the minimum value \(\left|\mathrm{z}_{1}-\mathrm{z}_{2}\right|\) is (a) 0 (b) 2 (c) 7 (d) 17
It \(\mathrm{z}^{2}+\mathrm{z}+1=0\) where \(\mathrm{z}\) is a complex number, then the value of \([z+(1 / z)]^{2}+\left[z^{2}+\left(1 / z^{2}\right)\right]^{2}+\left[z^{3}+\left(1 / z^{3}\right)\right]^{2}+\ldots\) \(+\left[z^{6}+\left(1 / z^{6}\right)\right]^{2}\) is (a) 18 (b) 54 (c) 6 (d) 12
What do you think about this solution?
We value your feedback to improve our textbook solutions.