Chapter 2: Problem 122
\((1+i)(2+a i)+(2+3 i)(3+i)=x+i y, x, x y \in R\) and \(x=y\) then \(\mathrm{a}=\) (a) 5 (b) \(-4\) (c) \(-5\) (d) 4
Chapter 2: Problem 122
\((1+i)(2+a i)+(2+3 i)(3+i)=x+i y, x, x y \in R\) and \(x=y\) then \(\mathrm{a}=\) (a) 5 (b) \(-4\) (c) \(-5\) (d) 4
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{w}\) is one of the cube root of 1 other then 1 then $$ \left|\begin{array}{ccc} 1 & 1 & 1 \\ 1 & -1-\mathrm{w}^{2} & \mathrm{w}^{2} \\ 1 & \mathrm{w}^{2} & \mathrm{w}^{4} \end{array}\right|= $$ (a) \(3 \mathrm{w}\) (b) \(3 \mathrm{w}(\mathrm{w}-1)\) (c) \(3 \mathrm{w}^{2}\) (d) \(3 \mathrm{w}(1-\mathrm{w})\)
The complex numbers \(\sin x+i \cos 2 x\) and \(\cos x-i \sin 2 x\) are conjugate of each other for (a) \(\mathrm{x}=\mathrm{k} \pi, \mathrm{k} \in \mathrm{z}\) (b) \(x=0\) (c) \(\mathrm{x}=[\mathrm{k}+(1 / 2)] \pi, \mathrm{k} \in \mathrm{z}\) (d) no value of \(\mathrm{x}\)
If \(z\) is a complex number satisfying \(|z-\operatorname{iRe}(z)|=|z-\operatorname{Im}(z)|\) then \(\mathrm{z}\) lies on (a) \(\mathrm{y}=\mathrm{x}-1\) (b) \(\mathrm{y}=\pm \mathrm{x}\) (c) \(\mathrm{y}=\mathrm{x}+1\) (d) \(\mathrm{y}=-\mathrm{x}+1\)
\(\mathrm{i}^{1}+\mathrm{i}^{2}+\mathrm{i}^{3}+\mathrm{i}^{4}+\ldots \ldots \ldots \mathrm{i}^{1000}=\) (a) \(-1\) (b) 0 (c) 1 (d) None
The principal argument of \(-2 \sqrt{3}-2 \mathrm{i}\) is (a) \([(-5 \pi) / 6]\) (b) \([(5 \pi) / 6]\) (c) \([(-2 \pi) / 3]\) (d) \([(2 \pi) / 3]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.