Chapter 2: Problem 124
The principal argument of \(-2 \sqrt{3}-2 \mathrm{i}\) is (a) \([(-5 \pi) / 6]\) (b) \([(5 \pi) / 6]\) (c) \([(-2 \pi) / 3]\) (d) \([(2 \pi) / 3]\)
Chapter 2: Problem 124
The principal argument of \(-2 \sqrt{3}-2 \mathrm{i}\) is (a) \([(-5 \pi) / 6]\) (b) \([(5 \pi) / 6]\) (c) \([(-2 \pi) / 3]\) (d) \([(2 \pi) / 3]\)
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(z\) be complex number with modulus 2 and argument \([(-2 \pi) / 3]\) then \(\mathrm{z}=\) (a) \(-1+\mathrm{i} \sqrt{3}\) (b) \([(-1+i \sqrt{3}) / 2]\) (c) \(-1-\mathrm{i} \sqrt{3}\) (d) \([(-1-i \sqrt{3}) / 2]\)
If \(z=x+i y, x, y \in R\) and \(3 x+(3 x-y) i=4-6 i\) then \(z=\) (a) \((4 / 3)+\mathrm{i} 10\) (b) \((4 / 3)-\mathrm{i} 10\) (c) \([(-4) / 3]+\mathrm{i} 10\) (d) \([(-4) / 3]-\mathrm{i} 10\)
If \(\mathrm{a}=\cos (2 \pi / 7)+\mathrm{i} \sin (2 \pi / 7)\) then the quadratic equation whose roots are \(\alpha=\mathrm{a}+\mathrm{a}^{2}+\mathrm{a}^{4}\) and \(\beta=\mathrm{a}^{3}+\mathrm{a}^{5}+\mathrm{a}^{6}\) is (a) \(x^{2}-x+2\) (b) \(x^{2}+x-2\) (c) \(x^{2}-x-2\) (d) \(x^{2}+x+2\)
\(\mathrm{i}^{1}+\mathrm{i}^{2}+\mathrm{i}^{3}+\mathrm{i}^{4}+\ldots \ldots \ldots \mathrm{i}^{1000}=\) (a) \(-1\) (b) 0 (c) 1 (d) None
The complex numbers \(\mathrm{z}_{1}, \mathrm{z}_{2}\) and \(\mathrm{z}_{3}\) satisfying \(\left[\left(z_{1}-z_{3}\right) /\left(z_{2}-z_{3}\right)\right]=[(1-i \sqrt{3}) / 2]\) are the vertices of a triangle which is (a) of area zero (b) right angled isosceles (c) equilateral (d) obtuse-angle isosceles
What do you think about this solution?
We value your feedback to improve our textbook solutions.