Chapter 2: Problem 126
If \(1, \mathrm{w}\) and \(\mathrm{w}^{2}\) are cube root of 1 then \((1-\mathrm{w})\left(1-\mathrm{w}^{2}\right)\) \(\left(1-\mathrm{w}^{4}\right)\left(1-\mathrm{w}^{8}\right)=\) (a) 16 (b) 8 (c) 9 (d) 64
Chapter 2: Problem 126
If \(1, \mathrm{w}\) and \(\mathrm{w}^{2}\) are cube root of 1 then \((1-\mathrm{w})\left(1-\mathrm{w}^{2}\right)\) \(\left(1-\mathrm{w}^{4}\right)\left(1-\mathrm{w}^{8}\right)=\) (a) 16 (b) 8 (c) 9 (d) 64
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{x}=\mathrm{a}+\mathrm{b}, \mathrm{y}=\mathrm{a} \alpha+\mathrm{b} \beta\) and \(\mathrm{z}=\mathrm{a} \beta+\mathrm{b} \alpha\), Where \(\alpha, \beta \neq 1\) are cube roots of unity, then \(\mathrm{xyz}=\) (a) \(2\left(\mathrm{a}^{3}+\mathrm{b}^{3}\right)\) (b) \(2\left(a^{3}-b^{3}\right)\) (c) \(\mathrm{a}^{3}+\mathrm{b}^{3}\) (d) \(a^{3}-b^{3}\)
Evaluate \(\left[\mathrm{i}^{19}+(1 / \mathrm{i})^{25}\right]^{2}\) (a) 4 (b) \(-4\) (c) 5 (d) \(-5\)
Let \(\alpha, \beta\) be real and \(z\) be a complex number if \(z^{2}+\alpha z+\beta=0\) has two distinct roots on the line \(\operatorname{Re}(z)=1\) then it is necessary that (a) \(\beta \in(-1,0)\) (b) \(|\beta|=1\) (c) \(\beta \in[1, \infty)\) (d) \(\beta \in(0,1)\)
The complex numbers \(\sin x+i \cos 2 x\) and \(\cos x-i \sin 2 x\) are conjugate of each other for (a) \(\mathrm{x}=\mathrm{k} \pi, \mathrm{k} \in \mathrm{z}\) (b) \(x=0\) (c) \(\mathrm{x}=[\mathrm{k}+(1 / 2)] \pi, \mathrm{k} \in \mathrm{z}\) (d) no value of \(\mathrm{x}\)
If \([\\{(1+i) x-2 i\\} /(3+i)]+[\\{(2-3 i) y+i\\} /(3-i)\\}]=i\) then \((\mathrm{x}, \mathrm{y})=\) (a) \((3,1)\) (b) \((3,-1)\) (c) \((-3,1)\) (d) \((-3,-1)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.