Chapter 2: Problem 126
If \(1, \mathrm{w}\) and \(\mathrm{w}^{2}\) are cube root of 1 then \((1-\mathrm{w})\left(1-\mathrm{w}^{2}\right)\) \(\left(1-\mathrm{w}^{4}\right)\left(1-\mathrm{w}^{8}\right)=\) (a) 16 (b) 8 (c) 9 (d) 64
Chapter 2: Problem 126
If \(1, \mathrm{w}\) and \(\mathrm{w}^{2}\) are cube root of 1 then \((1-\mathrm{w})\left(1-\mathrm{w}^{2}\right)\) \(\left(1-\mathrm{w}^{4}\right)\left(1-\mathrm{w}^{8}\right)=\) (a) 16 (b) 8 (c) 9 (d) 64
All the tools & learning materials you need for study success - in one app.
Get started for freeThe small positive integer ' \(n\) ' for which \((1+i)^{2 n}=(1-i)^{2 n}\) is \(\begin{array}{lll}\text { (a) } 4 & \text { (b) } 8 & \text { (c) } 2\end{array}\) (d) 12
Let \(z=[(3+2 i \sin \theta) /(1-2 i \sin \theta)]\) and \(z=\underline{z}\) then \(\theta=\) (a) \((2 \mathrm{k}+1)(\pi / 2), \mathrm{k} \in \mathrm{z}\) (b) \(2 \mathrm{k} \pi, \mathrm{k} \overline{\in \mathrm{z}}\) (c) \(k \pi, k \in z\) (d) None
If \(\mathrm{x}>1\) then the square roots of \(1-\sqrt{\left(\mathrm{x}^{2}-1\right) \mathrm{i}}\) (a) \(\pm[\sqrt{\\{}(\mathrm{x}+1) / 2\\}-\mathrm{i} \sqrt{\\{}(\mathrm{x}-1) / 2\\}]\) (b) \(\pm[\sqrt{\\{}(\mathrm{x}+1) / 2\\}+\mathrm{i} \sqrt{\\{}(\mathrm{x}-1) / 2\\}]\) (c) \(\pm[\sqrt{\\{}(\mathrm{x}-1) / 2\\}-\mathrm{i} \sqrt{\\{}(\mathrm{x}+1) / 2\\}]\) (d) \(\pm[\sqrt{\\{}(\mathrm{x}-1) / 2\\}+\mathrm{i} \sqrt{\\{}(\mathrm{x}+1) / 2\\}]\)
If \(z=\cos \theta+i \sin \theta\) then \(\arg \left(z^{2}+\underline{z}\right)=\) (a) \((3 \theta / 2)\) (b) \(\theta\) (c) \((\theta / 2)\) (d) \(3 \theta\)
Let \(z\) be complex number with modulus 2 and argument \([(-2 \pi) / 3]\) then \(\mathrm{z}=\) (a) \(-1+\mathrm{i} \sqrt{3}\) (b) \([(-1+i \sqrt{3}) / 2]\) (c) \(-1-\mathrm{i} \sqrt{3}\) (d) \([(-1-i \sqrt{3}) / 2]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.