Chapter 2: Problem 127
\(w \neq 1\) is cube root of 1 and \(\left(1+w^{2}\right)^{n}=\left(1+w^{4}\right)^{n}\) then the smallest positive value of \(\mathrm{n}\) is (a) 2 (b) 3 (c) 5 (d) 6
Chapter 2: Problem 127
\(w \neq 1\) is cube root of 1 and \(\left(1+w^{2}\right)^{n}=\left(1+w^{4}\right)^{n}\) then the smallest positive value of \(\mathrm{n}\) is (a) 2 (b) 3 (c) 5 (d) 6
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(\alpha, \beta\) be real and \(z\) be a complex number if \(z^{2}+\alpha z+\beta=0\) has two distinct roots on the line \(\operatorname{Re}(z)=1\) then it is necessary that (a) \(\beta \in(-1,0)\) (b) \(|\beta|=1\) (c) \(\beta \in[1, \infty)\) (d) \(\beta \in(0,1)\)
The number of complex numbers \(z\) such that \(|z-1|\) \(=|z+1|=|z-i|\) equal (a) 0 (b) 1 (c) 2 (d) \(\infty\)
If \(Z=[(4+3 i) /(5-3 i)]\) then \(Z^{-1}=\) (a) \((11 / 25)-(27 / 25) \mathrm{i}\) (b) \([(-11) / 25)]-(27 / 25) \mathrm{i}\) (c) \([(-11) / 25)]+(27 / 25) \mathrm{i}\) (d) \((11 / 25)+(27 / 25) \mathrm{i}\)
Evaluate \(\left[\mathrm{i}^{19}+(1 / \mathrm{i})^{25}\right]^{2}\) (a) 4 (b) \(-4\) (c) 5 (d) \(-5\)
Let \(z\) be complex number with modulus 2 and argument \([(-2 \pi) / 3]\) then \(\mathrm{z}=\) (a) \(-1+\mathrm{i} \sqrt{3}\) (b) \([(-1+i \sqrt{3}) / 2]\) (c) \(-1-\mathrm{i} \sqrt{3}\) (d) \([(-1-i \sqrt{3}) / 2]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.