Chapter 2: Problem 127
\(w \neq 1\) is cube root of 1 and \(\left(1+w^{2}\right)^{n}=\left(1+w^{4}\right)^{n}\) then the smallest positive value of \(\mathrm{n}\) is (a) 2 (b) 3 (c) 5 (d) 6
Chapter 2: Problem 127
\(w \neq 1\) is cube root of 1 and \(\left(1+w^{2}\right)^{n}=\left(1+w^{4}\right)^{n}\) then the smallest positive value of \(\mathrm{n}\) is (a) 2 (b) 3 (c) 5 (d) 6
All the tools & learning materials you need for study success - in one app.
Get started for free\(\mathrm{A}\left(\mathrm{z}_{1}\right), \mathrm{B}\left(\mathrm{z}_{2}\right)\) and \(\mathrm{C}\left(\mathrm{z}_{3}\right)\) are vertices of \(\triangle \mathrm{ABC}\) where \(\mathrm{m}\) \(\angle \mathrm{C}=(\pi / 2)\) and \(\mathrm{AC}=\mathrm{BC}, \mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}\) are complex number if \(\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right)^{2}=\mathrm{k}\left(\mathrm{z}_{1}-\mathrm{z}_{3}\right)\left(\mathrm{z}_{3}-\mathrm{z}_{2}\right)\) then \(\mathrm{k}=\) (a) 1 (b) 2 (c) 4 (d) non of these
The principal argument of \(-2 \sqrt{3}-2 \mathrm{i}\) is (a) \([(-5 \pi) / 6]\) (b) \([(5 \pi) / 6]\) (c) \([(-2 \pi) / 3]\) (d) \([(2 \pi) / 3]\)
The value of \((-i)^{(-1)}=\) (a) \(-(\pi / 2)\) (b) \((\pi / 2)\) (c) \(\mathrm{e}^{-(\pi / 2)}\) (b) \(\mathrm{e}^{(\pi / 2)}\)
If \([(1+2 i) /(2+i)]=r(\cos \theta+i \sin \theta)\), then (a) \(r=1, \theta=\tan ^{-1}(4 / 3)\) (b) \(\mathrm{r}=\sqrt{5}, \theta=\tan ^{-1}(5 / 4)\) (c) \(\mathrm{r}=1, \theta=\tan ^{-1}(3 / 4)\) (d) \(r=2, \theta=\tan ^{-1}(3 / 4)\)
If \(z\) is a complex number satisfying \(|z-\operatorname{iRe}(z)|=|z-\operatorname{Im}(z)|\) then \(\mathrm{z}\) lies on (a) \(\mathrm{y}=\mathrm{x}-1\) (b) \(\mathrm{y}=\pm \mathrm{x}\) (c) \(\mathrm{y}=\mathrm{x}+1\) (d) \(\mathrm{y}=-\mathrm{x}+1\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.