Chapter 2: Problem 131
\([\\{1+\cos (\pi / 12)+i \sin (\pi / 12)\\} /\\{1+\cos (\pi / 12)\) \(-i \sin (\pi / 12)\\}]^{36}=\) (a) \(-1\) (b) 1 (c) 0 (d) \((1 / 2)\)
Chapter 2: Problem 131
\([\\{1+\cos (\pi / 12)+i \sin (\pi / 12)\\} /\\{1+\cos (\pi / 12)\) \(-i \sin (\pi / 12)\\}]^{36}=\) (a) \(-1\) (b) 1 (c) 0 (d) \((1 / 2)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{w}\) is one of the cube root of 1 other then 1 then $$ \left|\begin{array}{ccc} 1 & 1 & 1 \\ 1 & -1-\mathrm{w}^{2} & \mathrm{w}^{2} \\ 1 & \mathrm{w}^{2} & \mathrm{w}^{4} \end{array}\right|= $$ (a) \(3 \mathrm{w}\) (b) \(3 \mathrm{w}(\mathrm{w}-1)\) (c) \(3 \mathrm{w}^{2}\) (d) \(3 \mathrm{w}(1-\mathrm{w})\)
If \(Z=[(4+3 i) /(5-3 i)]\) then \(Z^{-1}=\) (a) \((11 / 25)-(27 / 25) \mathrm{i}\) (b) \([(-11) / 25)]-(27 / 25) \mathrm{i}\) (c) \([(-11) / 25)]+(27 / 25) \mathrm{i}\) (d) \((11 / 25)+(27 / 25) \mathrm{i}\)
If \(z=\left[(1+7 i) /(2-i)^{2}\right]\) then the polar form of \(z\) is (a) \(\sqrt{2}[\cos (3 \pi / 4)+\mathrm{i} \sin (3 \pi / 4)]\) (b) \(\sqrt{2}[\cos (\pi / 4)+\mathrm{i} \sin (\pi / 4)]\) (c) \(\sqrt{2}[\cos (7 \pi / 4)+\mathrm{i} \sin (7 \pi / 4)]\) (d) \(\sqrt{2}[\cos (5 \pi / 4)+\mathrm{i} \sin (5 \pi / 4)]\)
If \(\mathrm{z}_{1}=2-\mathrm{i}\) and \(\mathrm{z}_{2}=1+\mathrm{i}\) then \(\left|\left[\left(z_{1}-z_{2}+1\right) /\left(z_{1}+z_{2}+i\right)\right]\right|=\) (a) \(\sqrt{(5 / 3)}\) (b) \(\sqrt{(3 / 5)}\) (c) \(\sqrt{(4 / 5)}\) (d) \(\sqrt{(5 / 4)}\)
If \(1, \mathrm{w}\) and \(\mathrm{w}^{2}\) are cube root of 1 then \((1-\mathrm{w})\left(1-\mathrm{w}^{2}\right)\) \(\left(1-\mathrm{w}^{4}\right)\left(1-\mathrm{w}^{8}\right)=\) (a) 16 (b) 8 (c) 9 (d) 64
What do you think about this solution?
We value your feedback to improve our textbook solutions.