Chapter 2: Problem 131
\([\\{1+\cos (\pi / 12)+i \sin (\pi / 12)\\} /\\{1+\cos (\pi / 12)\) \(-i \sin (\pi / 12)\\}]^{36}=\) (a) \(-1\) (b) 1 (c) 0 (d) \((1 / 2)\)
Chapter 2: Problem 131
\([\\{1+\cos (\pi / 12)+i \sin (\pi / 12)\\} /\\{1+\cos (\pi / 12)\) \(-i \sin (\pi / 12)\\}]^{36}=\) (a) \(-1\) (b) 1 (c) 0 (d) \((1 / 2)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(z\) is a complex number satisfying \(|z-\operatorname{iRe}(z)|=|z-\operatorname{Im}(z)|\) then \(\mathrm{z}\) lies on (a) \(\mathrm{y}=\mathrm{x}-1\) (b) \(\mathrm{y}=\pm \mathrm{x}\) (c) \(\mathrm{y}=\mathrm{x}+1\) (d) \(\mathrm{y}=-\mathrm{x}+1\)
The complex numbers \(\mathrm{z}_{1}, \mathrm{z}_{2}\) and \(\mathrm{z}_{3}\) satisfying \(\left[\left(z_{1}-z_{3}\right) /\left(z_{2}-z_{3}\right)\right]=[(1-i \sqrt{3}) / 2]\) are the vertices of a triangle which is (a) of area zero (b) right angled isosceles (c) equilateral (d) obtuse-angle isosceles
The inequality \(|z-4|<|z-2|\) represent the region given by (a) \(\operatorname{Re}(z)>0\) (b) \(\operatorname{Re}(z)<0\) (c) \(\operatorname{Re}(z)>2\) (d) \(\operatorname{Re}(z)>3\)
If \(z=x+y\) i and \(|3 z|=|z-4|\) then \(x^{2}+y^{2}+x=\) (a) 1 (b) \(-1\) (c) 2 (d) \(-2\)
If \(\mathrm{x}=\mathrm{a}+\mathrm{b}, \mathrm{y}=\mathrm{a} \alpha+\mathrm{b} \beta\) and \(\mathrm{z}=\mathrm{a} \beta+\mathrm{b} \alpha\), Where \(\alpha, \beta \neq 1\) are cube roots of unity, then \(\mathrm{xyz}=\) (a) \(2\left(\mathrm{a}^{3}+\mathrm{b}^{3}\right)\) (b) \(2\left(a^{3}-b^{3}\right)\) (c) \(\mathrm{a}^{3}+\mathrm{b}^{3}\) (d) \(a^{3}-b^{3}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.