Chapter 2: Problem 132
\(4 \sqrt{(-8+8 \sqrt{3} i)}=\) (a) \(\pm(1+\sqrt{3 i})\) (b) \(\pm(2+2 \sqrt{3 i})\) (c) \(\pm(\sqrt{3}+\mathrm{i})\) (d) \(\pm(2-2 \sqrt{3} \mathrm{i})\)
Chapter 2: Problem 132
\(4 \sqrt{(-8+8 \sqrt{3} i)}=\) (a) \(\pm(1+\sqrt{3 i})\) (b) \(\pm(2+2 \sqrt{3 i})\) (c) \(\pm(\sqrt{3}+\mathrm{i})\) (d) \(\pm(2-2 \sqrt{3} \mathrm{i})\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe area of the triangle in the Arg and diagram formed by the Complex number \(\mathrm{z}\), iz and \(\mathrm{z}+\mathrm{iz}\) is (a) \(|z|^{2}\) (b) \((\sqrt{3} / 2)|z|^{2}\) (c) \((1 / 2)|\mathrm{z}|^{2}\) (d) \((3 / 2)|\mathrm{z}|^{2}\)
The equation \(|z-i|+|z+i|=k\) represent an ellipse if \(K=\) (a) 1 (b) 2 (c) 4 (d) \(-1\)
If \(z=x+y\) i and \(|3 z|=|z-4|\) then \(x^{2}+y^{2}+x=\) (a) 1 (b) \(-1\) (c) 2 (d) \(-2\)
lt \(z\) be a complex number and \(|z+3|<8 .\) Then the value of \(|z-2|\) lies in (a) \([-2,13]\) (b) \([0,13]\) (c) \([2,13]\) (d) \([-13,2]\)
The inequality \(|z-4|<|z-2|\) represent the region given by (a) \(\operatorname{Re}(z)>0\) (b) \(\operatorname{Re}(z)<0\) (c) \(\operatorname{Re}(z)>2\) (d) \(\operatorname{Re}(z)>3\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.