Chapter 2: Problem 132
\(4 \sqrt{(-8+8 \sqrt{3} i)}=\) (a) \(\pm(1+\sqrt{3 i})\) (b) \(\pm(2+2 \sqrt{3 i})\) (c) \(\pm(\sqrt{3}+\mathrm{i})\) (d) \(\pm(2-2 \sqrt{3} \mathrm{i})\)
Chapter 2: Problem 132
\(4 \sqrt{(-8+8 \sqrt{3} i)}=\) (a) \(\pm(1+\sqrt{3 i})\) (b) \(\pm(2+2 \sqrt{3 i})\) (c) \(\pm(\sqrt{3}+\mathrm{i})\) (d) \(\pm(2-2 \sqrt{3} \mathrm{i})\)
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(z_{1}\) and \(z_{2}\) be two roots of equation \(z^{2}+a z+b=0 . Z\) is complex number. Assume that origin, \(\mathrm{z}_{1}\) and \(\mathrm{z}_{2}\) from an equilateral triangle then (a) \(\mathrm{a}^{2}=2 \mathrm{~b}\) (b) \(\mathrm{a}^{2}=3 \mathrm{~b}\) (c) \(a^{2}=4 b\) (b) \(a^{2}=b\)
The equation \(|z-i|+|z+i|=k\) represent an ellipse if \(K=\) (a) 1 (b) 2 (c) 4 (d) \(-1\)
The small positive integer ' \(n\) ' for which \((1+i)^{2 n}=(1-i)^{2 n}\) is \(\begin{array}{lll}\text { (a) } 4 & \text { (b) } 8 & \text { (c) } 2\end{array}\) (d) 12
The principal argument of \(-2 \sqrt{3}-2 \mathrm{i}\) is (a) \([(-5 \pi) / 6]\) (b) \([(5 \pi) / 6]\) (c) \([(-2 \pi) / 3]\) (d) \([(2 \pi) / 3]\)
If \(\left|\begin{array}{rrr}6 \mathrm{i} & -3 \mathrm{i} & 1 \\ 4 & 3 \mathrm{i} & -1 \\ 20 & 3 & \mathrm{i}\end{array}\right|=\mathrm{x}+\) iy then (a) \(\mathrm{x}=3, \mathrm{y}=1\) (b) \(x=1, y=3\) (c) \(x=0, y=3\) (a) \(\mathrm{x}=0, \mathrm{y}=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.