If \(a=\cos \alpha+i \sin \alpha, b=\cos \beta+i \sin \beta c=\cos \gamma+i \sin \gamma\) and \((a / b)+(b / c)+(c / a)=1\) then \(\cos (\alpha-\beta)+\cos (\beta-\gamma)+\cos (\gamma-\alpha)=\) (a) \((3 / 2)\) (b) \(-(3 / 2)\) (c) 0 (d) 1

Short Answer

Expert verified
The short answer is: \(\cos(\alpha-\beta) + \cos(\beta-\gamma) + \cos(\gamma-\alpha) = 1\).

Step by step solution

01

Rewrite the given equation in complex numbers form

The given equation is \((a / b)+(b / c)+(c / a)=1\). First, we will rewrite this equation involving complex numbers: \[\frac{\cos{\alpha} + i\sin{\alpha}}{\cos{\beta} + i\sin{\beta}} + \frac{\cos{\beta} + i\sin{\beta}}{\cos{\gamma} + i\sin{\gamma}} + \frac{\cos{\gamma} + i\sin{\gamma}}{\cos{\alpha} + i\sin{\alpha}} = 1\]
02

Separate the real and imaginary parts

Next, we will separate the real and imaginary parts by multiplying each term of the equation by the corresponding complex conjugate in the denominator: \[\frac{(\cos{\alpha} + i\sin{\alpha})(\cos{\beta} - i\sin{\beta})}{\cos^2{\beta} + \sin^2{\beta}} + \frac{(\cos{\beta} + i\sin{\beta})(\cos{\gamma} - i\sin{\gamma})}{\cos^2{\gamma} + \sin^2{\gamma}} + \frac{(\cos{\gamma} + i\sin{\gamma})(\cos{\alpha} - i\sin{\alpha})}{\cos^2{\alpha} + \sin^2{\alpha}} = 1\] Now, use the Pythagorean identities \(\cos^2 x + \sin^2 x = 1\): \[(\cos{\alpha}\cos{\beta} + \sin{\alpha}\sin{\beta}) + i(\sin{\alpha}\cos{\beta} - \cos{\alpha}\sin{\beta}) + (\cos{\beta}\cos{\gamma} + \sin{\beta}\sin{\gamma}) + i(\sin{\beta}\cos{\gamma} - \cos{\beta}\sin{\gamma}) + (\cos{\gamma}\cos{\alpha} + \sin{\gamma}\sin{\alpha}) + i(\sin{\gamma}\cos{\alpha} - \cos{\gamma}\sin{\alpha}) = 1\]
03

Simplify the equation and find the value of trigonometric expression

Combine the real and imaginary parts: \[((\cos{\alpha}\cos{\beta} + \sin{\alpha}\sin{\beta}) + (\cos{\beta}\cos{\gamma} + \sin{\beta}\sin{\gamma}) + (\cos{\gamma}\cos{\alpha} + \sin{\gamma}\sin{\alpha})) + i((\sin{\alpha}\cos{\beta} - \cos{\alpha}\sin{\beta}) + (\sin{\beta}\cos{\gamma} - \cos{\beta}\sin{\gamma}) + (\sin{\gamma}\cos{\alpha} - \cos{\gamma}\sin{\alpha})) = 1\] From this equation, we can notice that the imaginary part must be equal to 0 to hold the equation true. From there, we can extract the desired trigonometric expression: \[\cos(\alpha-\beta) + \cos(\beta-\gamma) + \cos(\gamma-\alpha) = (\cos{\alpha}\cos{\beta} + \sin{\alpha}\sin{\beta}) + (\cos{\beta}\cos{\gamma} + \sin{\beta}\sin{\gamma}) + (\cos{\gamma}\cos{\alpha} + \sin{\gamma}\sin{\alpha})\] Comparing this expression with the given options: (a) \(\frac{3}{2}\) (b) \(-\frac{3}{2}\) (c) 0 (d) 1 As the sum of three cosines can never be greater than 3 or smaller than -3, the only plausible option is (d) 1: \[\cos(\alpha-\beta) + \cos(\beta-\gamma) + \cos(\gamma-\alpha) = 1\]

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(w \neq 1\) is cube root of 1 and \(\left(1+w^{2}\right)^{n}=\left(1+w^{4}\right)^{n}\) then the smallest positive value of \(\mathrm{n}\) is (a) 2 (b) 3 (c) 5 (d) 6

If \(\mathrm{w}\) is one of the cube root of 1 other then 1 then $$ \left|\begin{array}{ccc} 1 & 1 & 1 \\ 1 & -1-\mathrm{w}^{2} & \mathrm{w}^{2} \\ 1 & \mathrm{w}^{2} & \mathrm{w}^{4} \end{array}\right|= $$ (a) \(3 \mathrm{w}\) (b) \(3 \mathrm{w}(\mathrm{w}-1)\) (c) \(3 \mathrm{w}^{2}\) (d) \(3 \mathrm{w}(1-\mathrm{w})\)

If \(z_{1}, z_{2}\) are complex numbers and \(\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|\) then (a) \(\arg \left(\mathrm{z}_{1}\right)+\arg \left(\mathrm{z}_{2}\right)=0\) (b) \(\arg \left(\mathrm{z}_{1} \mathrm{z}_{2}\right)=0\) (c) \(\arg \left(\mathrm{z}_{1}\right)=\arg \left(\mathrm{z}_{2}\right)\) (d) None of these

If \(\mathrm{x}>1\) then the square roots of \(1-\sqrt{\left(\mathrm{x}^{2}-1\right) \mathrm{i}}\) (a) \(\pm[\sqrt{\\{}(\mathrm{x}+1) / 2\\}-\mathrm{i} \sqrt{\\{}(\mathrm{x}-1) / 2\\}]\) (b) \(\pm[\sqrt{\\{}(\mathrm{x}+1) / 2\\}+\mathrm{i} \sqrt{\\{}(\mathrm{x}-1) / 2\\}]\) (c) \(\pm[\sqrt{\\{}(\mathrm{x}-1) / 2\\}-\mathrm{i} \sqrt{\\{}(\mathrm{x}+1) / 2\\}]\) (d) \(\pm[\sqrt{\\{}(\mathrm{x}-1) / 2\\}+\mathrm{i} \sqrt{\\{}(\mathrm{x}+1) / 2\\}]\)

If \(\left|\begin{array}{rrr}6 \mathrm{i} & -3 \mathrm{i} & 1 \\ 4 & 3 \mathrm{i} & -1 \\ 20 & 3 & \mathrm{i}\end{array}\right|=\mathrm{x}+\) iy then (a) \(\mathrm{x}=3, \mathrm{y}=1\) (b) \(x=1, y=3\) (c) \(x=0, y=3\) (a) \(\mathrm{x}=0, \mathrm{y}=0\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free