The value of \((-i)^{(-1)}=\) (a) \(-(\pi / 2)\) (b) \((\pi / 2)\) (c) \(\mathrm{e}^{-(\pi / 2)}\) (b) \(\mathrm{e}^{(\pi / 2)}\)

Short Answer

Expert verified
\( \mathrm{e}^{-(\pi / 2)} \)

Step by step solution

01

Express -i in exponential form

The exponential form of a complex number is given by \(re^{i\theta}\), where r is the magnitude of the complex number and \(\theta\) is the argument (angle) of the complex number. Here, we have -i, which can be written as \(0 - i\). The magnitude of -i is: \[r = \sqrt{0^2 + (-1)^2} = 1\] Now we need to find the angle \(\theta\). Since -i is along the negative imaginary axis, the angle is \(\frac{3\pi}{2}\). So, the exponential form of -i is: \[-i = 1e^{i\frac{3\pi}{2}}\]
02

Raise the exponential form of -i to -1

Now we need to raise this to the power of -1: \[(-i)^{-1} = (1e^{i\frac{3\pi}{2}})^{-1}\] We know that \((a^b)^c = a^{bc}\), so we can multiply exponents: \[(1e^{i\frac{3\pi}{2}})^{-1} = 1e^{-i\frac{3\pi}{2}}\] Comparing this result to the given options, we can see that the answer is (c), which is \(\mathrm{e}^{-(\pi / 2)}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If \(\mathrm{f}(\mathrm{x})=4 \mathrm{x}^{5}+5 \mathrm{x}^{4}-8 \mathrm{x}^{3}+5 \mathrm{x}^{2} 4 \mathrm{x}-34 \mathrm{i}\) and \(\mathrm{f}[(-1+\sqrt{3} \mathrm{i}) / 2]=\mathrm{a}+\mathrm{ib}\) then \(\mathrm{a}: \mathrm{b}=\) (a) \(1: 2\) (b) \(-2: 1\) (c) \(17: 1\) (d) \(-17: 1\)

For complex numbers \(z_{1}, z_{2}\) if \(\left|z_{1}\right|=12\) and \(\left|z_{2}-3-4 i\right|=5\) then the minimum value \(\left|\mathrm{z}_{1}-\mathrm{z}_{2}\right|\) is (a) 0 (b) 2 (c) 7 (d) 17

If \(z=\left[(1+7 i) /(2-i)^{2}\right]\) then the polar form of \(z\) is (a) \(\sqrt{2}[\cos (3 \pi / 4)+\mathrm{i} \sin (3 \pi / 4)]\) (b) \(\sqrt{2}[\cos (\pi / 4)+\mathrm{i} \sin (\pi / 4)]\) (c) \(\sqrt{2}[\cos (7 \pi / 4)+\mathrm{i} \sin (7 \pi / 4)]\) (d) \(\sqrt{2}[\cos (5 \pi / 4)+\mathrm{i} \sin (5 \pi / 4)]\)

The expression of complex number \([1 /(1+\cos \theta-i \sin \theta)]\) in the form \(\mathrm{a}+\mathrm{ib}\) is (a) \([(\sin \theta) /\\{2(1+\overline{\cos \theta)}\\}]+\mathrm{i}(1 / 2)\) (b) \((1 / 2)-\mathrm{i}[(\sin \theta) /\\{2(1+\cos \theta)\\}]\) (c) \((1 / 2)+\mathrm{i}(1 / 2) \tan (\theta / 2)\) (d) \((1 / 2) \tan (\theta / 2)-\mathrm{i}(1 / 2)\)

\(\mathrm{A}\left(\mathrm{z}_{1}\right), \mathrm{B}\left(\mathrm{z}_{2}\right)\) and \(\mathrm{C}\left(\mathrm{z}_{3}\right)\) are vertices of \(\triangle \mathrm{ABC}\) where \(\mathrm{m}\) \(\angle \mathrm{C}=(\pi / 2)\) and \(\mathrm{AC}=\mathrm{BC}, \mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}\) are complex number if \(\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right)^{2}=\mathrm{k}\left(\mathrm{z}_{1}-\mathrm{z}_{3}\right)\left(\mathrm{z}_{3}-\mathrm{z}_{2}\right)\) then \(\mathrm{k}=\) (a) 1 (b) 2 (c) 4 (d) non of these

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free