Chapter 2: Problem 138
The value of \((-i)^{(-1)}=\) (a) \(-(\pi / 2)\) (b) \((\pi / 2)\) (c) \(\mathrm{e}^{-(\pi / 2)}\) (b) \(\mathrm{e}^{(\pi / 2)}\)
Chapter 2: Problem 138
The value of \((-i)^{(-1)}=\) (a) \(-(\pi / 2)\) (b) \((\pi / 2)\) (c) \(\mathrm{e}^{-(\pi / 2)}\) (b) \(\mathrm{e}^{(\pi / 2)}\)
All the tools & learning materials you need for study success - in one app.
Get started for free\((1+i)(2+a i)+(2+3 i)(3+i)=x+i y, x, x y \in R\) and \(x=y\) then \(\mathrm{a}=\) (a) 5 (b) \(-4\) (c) \(-5\) (d) 4
Let \(z_{1}\) and \(z_{2}\) be two roots of equation \(z^{2}+a z+b=0 . Z\) is complex number. Assume that origin, \(\mathrm{z}_{1}\) and \(\mathrm{z}_{2}\) from an equilateral triangle then (a) \(\mathrm{a}^{2}=2 \mathrm{~b}\) (b) \(\mathrm{a}^{2}=3 \mathrm{~b}\) (c) \(a^{2}=4 b\) (b) \(a^{2}=b\)
If \(z=x+\) iy, \(x, y \in R\) and \(|x|+|y| \leq k|z|\) then \(k=\) (a) 1 (b) \(\sqrt{2}\) (c) \(\sqrt{3}\) (d) \(\sqrt{4}\)
If \(1, \mathrm{w}\) and \(\mathrm{w}^{2}\) are cube root of 1 then \((1-\mathrm{w})\left(1-\mathrm{w}^{2}\right)\) \(\left(1-\mathrm{w}^{4}\right)\left(1-\mathrm{w}^{8}\right)=\) (a) 16 (b) 8 (c) 9 (d) 64
If \(z=x+y\) i and \(|3 z|=|z-4|\) then \(x^{2}+y^{2}+x=\) (a) 1 (b) \(-1\) (c) 2 (d) \(-2\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.