Chapter 2: Problem 145
For any integer \(\mathrm{n}, \arg \left[(\sqrt{3}+\mathrm{i})^{4 n+1} /(1-\mathrm{i} \sqrt{3})^{4 \mathrm{n}}\right]=\) (a) \((\pi / 3)\) (b) \((\pi / 6)\) (c) \((2 \pi / 3)\) (d) \((5 \pi / 6)\)
Chapter 2: Problem 145
For any integer \(\mathrm{n}, \arg \left[(\sqrt{3}+\mathrm{i})^{4 n+1} /(1-\mathrm{i} \sqrt{3})^{4 \mathrm{n}}\right]=\) (a) \((\pi / 3)\) (b) \((\pi / 6)\) (c) \((2 \pi / 3)\) (d) \((5 \pi / 6)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{z}_{1}=2-\mathrm{i}\) and \(\mathrm{z}_{2}=1+\mathrm{i}\) then \(\left|\left[\left(z_{1}-z_{2}+1\right) /\left(z_{1}+z_{2}+i\right)\right]\right|=\) (a) \(\sqrt{(5 / 3)}\) (b) \(\sqrt{(3 / 5)}\) (c) \(\sqrt{(4 / 5)}\) (d) \(\sqrt{(5 / 4)}\)
The area of the triangle in the Arg and diagram formed by the Complex number \(\mathrm{z}\), iz and \(\mathrm{z}+\mathrm{iz}\) is (a) \(|z|^{2}\) (b) \((\sqrt{3} / 2)|z|^{2}\) (c) \((1 / 2)|\mathrm{z}|^{2}\) (d) \((3 / 2)|\mathrm{z}|^{2}\)
If \(z=x-\) iy and \(z^{(1 / 3)}=p+i\) q then \(\left[\\{(x / p)+(y / q)\\} /\left(p^{2}+q^{2}\right)\right]\) (a) 2 (b) \(-1\) (c) 1 (d) \(-2\)
Let \(z=[(3+2 i \sin \theta) /(1-2 i \sin \theta)]\) and \(z=\underline{z}\) then \(\theta=\) (a) \((2 \mathrm{k}+1)(\pi / 2), \mathrm{k} \in \mathrm{z}\) (b) \(2 \mathrm{k} \pi, \mathrm{k} \overline{\in \mathrm{z}}\) (c) \(k \pi, k \in z\) (d) None
If \(|z-4 / z|=2\) then the maximum value of \(|z|\) is (a) \(\sqrt{5}+1\) (b) 2 (c) \(2+\sqrt{2}\) (d) \(\overline{\sqrt{3}+1}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.