Chapter 2: Problem 145
For any integer \(\mathrm{n}, \arg \left[(\sqrt{3}+\mathrm{i})^{4 n+1} /(1-\mathrm{i} \sqrt{3})^{4 \mathrm{n}}\right]=\) (a) \((\pi / 3)\) (b) \((\pi / 6)\) (c) \((2 \pi / 3)\) (d) \((5 \pi / 6)\)
Chapter 2: Problem 145
For any integer \(\mathrm{n}, \arg \left[(\sqrt{3}+\mathrm{i})^{4 n+1} /(1-\mathrm{i} \sqrt{3})^{4 \mathrm{n}}\right]=\) (a) \((\pi / 3)\) (b) \((\pi / 6)\) (c) \((2 \pi / 3)\) (d) \((5 \pi / 6)\)
All the tools & learning materials you need for study success - in one app.
Get started for free
Let \(z, w\) be complex numbers such that \(\underline{z}+i \underline{w}=o\) and \(\operatorname{Arg}(\mathrm{zW})=\pi\) then \(\operatorname{Arg}(\mathrm{z})=\) (a) \((3 \pi / 4)\) (b) \((\pi / 2)\) (c) \((\pi / 4)\) (d) \((5 \pi / 4)\)
If \(\mathrm{w}=[\mathrm{z} /\\{\mathrm{z}-(1 / 3)\\}] \mathrm{i}\) and \(|\mathrm{w}|=1\) then \(\mathrm{z}\) lies on (a) circle (b) an ellipse (c) Parabola (d) a straight line
If \(|z|=1\) and \(w=[(z-1) /(z+1)](z \neq-1)\) then \(\operatorname{Re}(w)=\) (a) 0 (b) \(\left[1 /\left(|z+1|^{2}\right)\right]\) (c) \(\left[1 /\left(|z+1|^{3}\right)\right]\) (d) \(\left[\sqrt{2} /\left(|\mathrm{z}+1|^{2}\right)\right]\)
\(\mathrm{A}\left(\mathrm{z}_{1}\right), \mathrm{B}\left(\mathrm{z}_{2}\right)\) and \(\mathrm{C}\left(\mathrm{z}_{3}\right)\) are vertices of \(\triangle \mathrm{ABC}\) where \(\mathrm{m}\) \(\angle \mathrm{C}=(\pi / 2)\) and \(\mathrm{AC}=\mathrm{BC}, \mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}\) are complex number if \(\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right)^{2}=\mathrm{k}\left(\mathrm{z}_{1}-\mathrm{z}_{3}\right)\left(\mathrm{z}_{3}-\mathrm{z}_{2}\right)\) then \(\mathrm{k}=\) (a) 1 (b) 2 (c) 4 (d) non of these
If \(1, \mathrm{w}\) and \(\mathrm{w}^{2}\) are cube root of 1 then \((1-\mathrm{w})\left(1-\mathrm{w}^{2}\right)\) \(\left(1-\mathrm{w}^{4}\right)\left(1-\mathrm{w}^{8}\right)=\) (a) 16 (b) 8 (c) 9 (d) 64
What do you think about this solution?
We value your feedback to improve our textbook solutions.