Chapter 2: Problem 146
If the imaginary part of \([(2 z-3) /(i z+1)]\) is \(-2\) then the locus of the point representing \(z\) in the complex plane is (a) a circle (b) a straight line (c) a parabola (d) an ellipse
Chapter 2: Problem 146
If the imaginary part of \([(2 z-3) /(i z+1)]\) is \(-2\) then the locus of the point representing \(z\) in the complex plane is (a) a circle (b) a straight line (c) a parabola (d) an ellipse
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are integers, not all equal, and \(\mathrm{w}\) is a cube root of unity \((\mathrm{w} \neq 1)\) Then the minimum value of \(\left|\mathrm{a}+\mathrm{bw}+\mathrm{cw}^{2}\right|\) is (a) 0 (b) 1 (c) \((\sqrt{3} / 2)\) (d) \((1 / 2)\)
The equation \(|z-i|+|z+i|=k\) represent an ellipse if \(K=\) (a) 1 (b) 2 (c) 4 (d) \(-1\)
The principal argument of \(-2 \sqrt{3}-2 \mathrm{i}\) is (a) \([(-5 \pi) / 6]\) (b) \([(5 \pi) / 6]\) (c) \([(-2 \pi) / 3]\) (d) \([(2 \pi) / 3]\)
For any integer \(\mathrm{n}, \arg \left[(\sqrt{3}+\mathrm{i})^{4 n+1} /(1-\mathrm{i} \sqrt{3})^{4 \mathrm{n}}\right]=\) (a) \((\pi / 3)\) (b) \((\pi / 6)\) (c) \((2 \pi / 3)\) (d) \((5 \pi / 6)\)
If \(x_{n}=\cos \left(\pi / 2^{n}\right)+i \sin \left(\pi / 2^{n}\right)\) then \(x_{1} x_{2} x_{3} \ldots \ldots \infty=\) (a) - i (b) \(-1\) (c) (d) 1
What do you think about this solution?
We value your feedback to improve our textbook solutions.