Chapter 2: Problem 147
The inequality \(|z-4|<|z-2|\) represent the region given by (a) \(\operatorname{Re}(z)>0\) (b) \(\operatorname{Re}(z)<0\) (c) \(\operatorname{Re}(z)>2\) (d) \(\operatorname{Re}(z)>3\)
Chapter 2: Problem 147
The inequality \(|z-4|<|z-2|\) represent the region given by (a) \(\operatorname{Re}(z)>0\) (b) \(\operatorname{Re}(z)<0\) (c) \(\operatorname{Re}(z)>2\) (d) \(\operatorname{Re}(z)>3\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe area of the triangle in the Arg and diagram formed by the Complex number \(\mathrm{z}\), iz and \(\mathrm{z}+\mathrm{iz}\) is (a) \(|z|^{2}\) (b) \((\sqrt{3} / 2)|z|^{2}\) (c) \((1 / 2)|\mathrm{z}|^{2}\) (d) \((3 / 2)|\mathrm{z}|^{2}\)
Evaluate \(\left[\mathrm{i}^{19}+(1 / \mathrm{i})^{25}\right]^{2}\) (a) 4 (b) \(-4\) (c) 5 (d) \(-5\)
If \(\mathrm{z}_{1}=2-\mathrm{i}\) and \(\mathrm{z}_{2}=1+\mathrm{i}\) then \(\left|\left[\left(z_{1}-z_{2}+1\right) /\left(z_{1}+z_{2}+i\right)\right]\right|=\) (a) \(\sqrt{(5 / 3)}\) (b) \(\sqrt{(3 / 5)}\) (c) \(\sqrt{(4 / 5)}\) (d) \(\sqrt{(5 / 4)}\)
If \([\\{(1+i) x-2 i\\} /(3+i)]+[\\{(2-3 i) y+i\\} /(3-i)\\}]=i\) then \((\mathrm{x}, \mathrm{y})=\) (a) \((3,1)\) (b) \((3,-1)\) (c) \((-3,1)\) (d) \((-3,-1)\)
\(w \neq 1\) is cube root of 1 and \(\left(1+w^{2}\right)^{n}=\left(1+w^{4}\right)^{n}\) then the smallest positive value of \(\mathrm{n}\) is (a) 2 (b) 3 (c) 5 (d) 6
What do you think about this solution?
We value your feedback to improve our textbook solutions.