Chapter 2: Problem 147
The inequality \(|z-4|<|z-2|\) represent the region given by (a) \(\operatorname{Re}(z)>0\) (b) \(\operatorname{Re}(z)<0\) (c) \(\operatorname{Re}(z)>2\) (d) \(\operatorname{Re}(z)>3\)
Chapter 2: Problem 147
The inequality \(|z-4|<|z-2|\) represent the region given by (a) \(\operatorname{Re}(z)>0\) (b) \(\operatorname{Re}(z)<0\) (c) \(\operatorname{Re}(z)>2\) (d) \(\operatorname{Re}(z)>3\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(z=-1\) then \(\arg z^{(2 / 3)}=\) (a) \((\pi / 3), 2 \pi\) (b) \(0,(2 \pi / 3),[(-2 \pi) / 3]\) (c) \([(10 \pi) / 3]\) (d) \(\pi, 2 \pi\)
For any integer \(\mathrm{n}, \arg \left[(\sqrt{3}+\mathrm{i})^{4 n+1} /(1-\mathrm{i} \sqrt{3})^{4 \mathrm{n}}\right]=\) (a) \((\pi / 3)\) (b) \((\pi / 6)\) (c) \((2 \pi / 3)\) (d) \((5 \pi / 6)\)
\(\left[\left\\{(\cos 2 \theta-\mathrm{i} \sin 2 \theta)^{7}(\cos 3 \theta+\mathrm{i} \sin 3 \theta)^{-5}\right\\}\right.\) \(/\left\\{(\cos 4 \theta+i \sin 4 \theta)^{12}(\cos 5 \theta+i \sin 5 \theta)^{-6}\right]=\) (a) \(\cos 33 \theta+i \sin 33 \theta\) (b) \(\cos 33 \theta-\mathrm{i} \sin 33 \theta\) (c) \(\cos 47 \theta+i \sin 47 \theta\) (d) \(\cos 47 \theta+\mathrm{i} \sin 47 \theta\)
If \(z_{1}, z_{2}\) are complex numbers and \(\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|\) then (a) \(\arg \left(\mathrm{z}_{1}\right)+\arg \left(\mathrm{z}_{2}\right)=0\) (b) \(\arg \left(\mathrm{z}_{1} \mathrm{z}_{2}\right)=0\) (c) \(\arg \left(\mathrm{z}_{1}\right)=\arg \left(\mathrm{z}_{2}\right)\) (d) None of these
If \(z=\cos (\pi / 3)-i \sin (\pi / 3)\) then \(z^{2}-z+1=\) (a) \(-2 \mathrm{i}\) (b) 2 (c) 0 (d) \(-2\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.