Chapter 2: Problem 157
If \(x_{n}=\cos \left(\pi / 2^{n}\right)+i \sin \left(\pi / 2^{n}\right)\) then \(x_{1} x_{2} x_{3} \ldots \ldots \infty=\) (a) - i (b) \(-1\) (c) (d) 1
Chapter 2: Problem 157
If \(x_{n}=\cos \left(\pi / 2^{n}\right)+i \sin \left(\pi / 2^{n}\right)\) then \(x_{1} x_{2} x_{3} \ldots \ldots \infty=\) (a) - i (b) \(-1\) (c) (d) 1
All the tools & learning materials you need for study success - in one app.
Get started for freeIt \(\mathrm{z}^{2}+\mathrm{z}+1=0\) where \(\mathrm{z}\) is a complex number, then the value of \([z+(1 / z)]^{2}+\left[z^{2}+\left(1 / z^{2}\right)\right]^{2}+\left[z^{3}+\left(1 / z^{3}\right)\right]^{2}+\ldots\) \(+\left[z^{6}+\left(1 / z^{6}\right)\right]^{2}\) is (a) 18 (b) 54 (c) 6 (d) 12
If \(\mathrm{w}\) is one of the cube root of 1 other then 1 then $$ \left|\begin{array}{ccc} 1 & 1 & 1 \\ 1 & -1-\mathrm{w}^{2} & \mathrm{w}^{2} \\ 1 & \mathrm{w}^{2} & \mathrm{w}^{4} \end{array}\right|= $$ (a) \(3 \mathrm{w}\) (b) \(3 \mathrm{w}(\mathrm{w}-1)\) (c) \(3 \mathrm{w}^{2}\) (d) \(3 \mathrm{w}(1-\mathrm{w})\)
For any integer \(\mathrm{n}, \arg \left[(\sqrt{3}+\mathrm{i})^{4 n+1} /(1-\mathrm{i} \sqrt{3})^{4 \mathrm{n}}\right]=\) (a) \((\pi / 3)\) (b) \((\pi / 6)\) (c) \((2 \pi / 3)\) (d) \((5 \pi / 6)\)
\([\\{1+\cos (\pi / 12)+i \sin (\pi / 12)\\} /\\{1+\cos (\pi / 12)\) \(-i \sin (\pi / 12)\\}]^{36}=\) (a) \(-1\) (b) 1 (c) 0 (d) \((1 / 2)\)
If \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are integers, not all equal, and \(\mathrm{w}\) is a cube root of unity \((\mathrm{w} \neq 1)\) Then the minimum value of \(\left|\mathrm{a}+\mathrm{bw}+\mathrm{cw}^{2}\right|\) is (a) 0 (b) 1 (c) \((\sqrt{3} / 2)\) (d) \((1 / 2)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.