Chapter 2: Problem 157
If \(x_{n}=\cos \left(\pi / 2^{n}\right)+i \sin \left(\pi / 2^{n}\right)\) then \(x_{1} x_{2} x_{3} \ldots \ldots \infty=\) (a) - i (b) \(-1\) (c) (d) 1
Chapter 2: Problem 157
If \(x_{n}=\cos \left(\pi / 2^{n}\right)+i \sin \left(\pi / 2^{n}\right)\) then \(x_{1} x_{2} x_{3} \ldots \ldots \infty=\) (a) - i (b) \(-1\) (c) (d) 1
All the tools & learning materials you need for study success - in one app.
Get started for free
If \(1, \mathrm{w}\) and \(\mathrm{w}^{2}\) are cube root of 1 then \((1-\mathrm{w})\left(1-\mathrm{w}^{2}\right)\) \(\left(1-\mathrm{w}^{4}\right)\left(1-\mathrm{w}^{8}\right)=\) (a) 16 (b) 8 (c) 9 (d) 64
For complex numbers \(z_{1}, z_{2}\) if \(\left|z_{1}\right|=12\) and \(\left|z_{2}-3-4 i\right|=5\) then the minimum value \(\left|\mathrm{z}_{1}-\mathrm{z}_{2}\right|\) is (a) 0 (b) 2 (c) 7 (d) 17
The equation \(|z-i|+|z+i|=k\) represent an ellipse if \(K=\) (a) 1 (b) 2 (c) 4 (d) \(-1\)
\(\mathrm{i}^{1}+\mathrm{i}^{2}+\mathrm{i}^{3}+\mathrm{i}^{4}+\ldots \ldots \ldots \mathrm{i}^{1000}=\) (a) \(-1\) (b) 0 (c) 1 (d) None
Let \(\alpha, \beta\) be real and \(z\) be a complex number if \(z^{2}+\alpha z+\beta=0\) has two distinct roots on the line \(\operatorname{Re}(z)=1\) then it is necessary that (a) \(\beta \in(-1,0)\) (b) \(|\beta|=1\) (c) \(\beta \in[1, \infty)\) (d) \(\beta \in(0,1)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.