Chapter 2: Problem 161
For complex numbers \(z_{1}, z_{2}\) if \(\left|z_{1}\right|=12\) and \(\left|z_{2}-3-4 i\right|=5\) then the minimum value \(\left|\mathrm{z}_{1}-\mathrm{z}_{2}\right|\) is (a) 0 (b) 2 (c) 7 (d) 17
Chapter 2: Problem 161
For complex numbers \(z_{1}, z_{2}\) if \(\left|z_{1}\right|=12\) and \(\left|z_{2}-3-4 i\right|=5\) then the minimum value \(\left|\mathrm{z}_{1}-\mathrm{z}_{2}\right|\) is (a) 0 (b) 2 (c) 7 (d) 17
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(Z\) is complex number. Then the locus of the point \(Z\) satisfying arg \([(z-i) /(z+i)]=(\pi / 4)\) is a (a) Circle with center \((-1,0)\) and radius \(\sqrt{2}\) (b) Circle with center \((0,0)\) and radius \(\sqrt{2}\) (c) Circle with center \((0,1)\) and radius \(\sqrt{2}\) (d) Circle with center \((1,1)\) and radius \(\sqrt{2}\)
\(w \neq 1\) is cube root of 1 and \(\left(1+w^{2}\right)^{n}=\left(1+w^{4}\right)^{n}\) then the smallest positive value of \(\mathrm{n}\) is (a) 2 (b) 3 (c) 5 (d) 6
The value of \((-i)^{(-1)}=\) (a) \(-(\pi / 2)\) (b) \((\pi / 2)\) (c) \(\mathrm{e}^{-(\pi / 2)}\) (b) \(\mathrm{e}^{(\pi / 2)}\)
If cube root of unity are \(1, w, w^{2}\) then the roots of the equation \((\mathrm{x}-1)^{3}+8=0\) are (a) \(-1,-1,-1\) (b) \(-1,-1+2 \mathrm{w},-1-2 \mathrm{w}^{2}\) (c) \(-1,1+2 \mathrm{w}, 1+2 \mathrm{w}^{2}\) (d) \(-1,1-2 \mathrm{w},+1-2 \mathrm{w}^{2}\)
If the imaginary part of \([(2 z-3) /(i z+1)]\) is \(-2\) then the locus of the point representing \(z\) in the complex plane is (a) a circle (b) a straight line (c) a parabola (d) an ellipse
What do you think about this solution?
We value your feedback to improve our textbook solutions.