Chapter 20: Problem 1905
\((p \wedge \sim q) \Lambda(\sim p \wedge q)\) is (a) a contradiction (b) a tautology (c) neither a tautology nor a contradiction (d) both tautology and contradiction
Chapter 20: Problem 1905
\((p \wedge \sim q) \Lambda(\sim p \wedge q)\) is (a) a contradiction (b) a tautology (c) neither a tautology nor a contradiction (d) both tautology and contradiction
All the tools & learning materials you need for study success - in one app.
Get started for free\(\mathrm{p} \Rightarrow \mathrm{q} \mathrm{V} \mathrm{r}\) is false then the true values of \(\mathrm{p}, \mathrm{q}\) and \(\mathrm{r}\) are respectively. (a) \(\mathrm{F}, \mathrm{T}, \mathrm{T}\) (b) \(\mathrm{T}, \mathrm{T}, \mathrm{F}\) (c) \(\mathrm{T}, \mathrm{F}, \mathrm{F}\) (d) \(\mathrm{F}, \mathrm{F}, \mathrm{F}\)
Which of the following is true ? (a) \(\mathrm{p} \Lambda(\sim \mathrm{p})=\mathrm{t}\) (b) \(p V(\sim p)=f\) (c) \(p \Rightarrow q=q \Rightarrow p\) (d) \(\mathrm{p} \Rightarrow \mathrm{q}=(\sim \mathrm{q}) \Rightarrow(\sim \mathrm{p})\)
If statement \(\mathrm{p}\) and \(\mathrm{r}\) are false and \(\mathrm{q}\) is true then truth value of \(\sim \mathrm{p} \Rightarrow(\mathrm{q} \Lambda \mathrm{r}) \mathrm{V} \mathrm{r}\) is \(\ldots \ldots \ldots\) (a)T (b) \(\mathrm{F}\) (c) \(\mathrm{T}\) or \(\mathrm{F}\) (d) Cannot say
If both \(\mathrm{p}\) and \(\mathrm{q}\) are false then (a) \(\mathrm{p} \Lambda \mathrm{q}\) is true (b) \(\mathrm{p} \mathrm{V} \mathrm{q}\) is false (c) \(p \Rightarrow q\) is false (d) \((\sim p) V q\) is false
Negation of for all \(\mathrm{x}, \mathrm{p}^{\prime}\) is \(\ldots \ldots \ldots\) (a) there exists \(\mathrm{x}, \sim \mathrm{p}\) (b) for all \(\mathrm{x} ; \sim \mathrm{p}\) (c) \(\sim \mathrm{p}\) (d) \(\mathrm{p}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.