Chapter 20: Problem 1916
\(\sim(p V \sim q) V(\sim p \wedge q)=\ldots \ldots . .\) (a) \(\mathrm{p}\) (b) \(\sim \mathrm{p}\) (c) \(q\) (d) \(\sim \mathrm{q}\)
Chapter 20: Problem 1916
\(\sim(p V \sim q) V(\sim p \wedge q)=\ldots \ldots . .\) (a) \(\mathrm{p}\) (b) \(\sim \mathrm{p}\) (c) \(q\) (d) \(\sim \mathrm{q}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeWhich of the following a tautology ? (a) p \(\Lambda(\sim \mathrm{p})\) (b) \(\mathrm{p} \Lambda \mathrm{c}\) (c) \(p \mathrm{~V} \mathrm{t}\) (d) \(\mathrm{p} \Lambda \mathrm{p}\)
If both \(\mathrm{p}\) and \(\mathrm{q}\) are false then (a) \(\mathrm{p} \Lambda \mathrm{q}\) is true (b) \(\mathrm{p} \mathrm{V} \mathrm{q}\) is false (c) \(p \Rightarrow q\) is false (d) \((\sim p) V q\) is false
\((p \Rightarrow q) \Leftrightarrow(\sim q \Rightarrow \sim p)\) is a (a) contradiction (b) tautology (c) both tautology \& contradiction (d) None of above
Negation of \(\mathrm{p} \rightarrow \mathrm{q}\) is (a) \(\sim \mathrm{p} \rightarrow \sim \mathrm{q}\) (b) \(\mathrm{p} \rightarrow \sim \mathrm{q}\) (c) \(\mathrm{p} \rightarrow \mathrm{q}\) (d) \(\sim \mathrm{q} \rightarrow \sim \mathrm{p}\)
The logically equivalent proposition of \(\sim q \Rightarrow p\) is (a) \(p \Rightarrow-q\) (b) \(\sim \mathrm{p} \Rightarrow \mathrm{q}\) (c) \(\sim \mathrm{q} \Rightarrow \sim \mathrm{p}\) (d) \(\sim \mathrm{p} \Rightarrow \sim \mathrm{q}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.