Chapter 20: Problem 1916
\(\sim(p V \sim q) V(\sim p \wedge q)=\ldots \ldots . .\) (a) \(\mathrm{p}\) (b) \(\sim \mathrm{p}\) (c) \(q\) (d) \(\sim \mathrm{q}\)
Chapter 20: Problem 1916
\(\sim(p V \sim q) V(\sim p \wedge q)=\ldots \ldots . .\) (a) \(\mathrm{p}\) (b) \(\sim \mathrm{p}\) (c) \(q\) (d) \(\sim \mathrm{q}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf both \(\mathrm{p}\) and \(\mathrm{q}\) are false then (a) \(\mathrm{p} \Lambda \mathrm{q}\) is true (b) \(\mathrm{p} \mathrm{V} \mathrm{q}\) is false (c) \(p \Rightarrow q\) is false (d) \((\sim p) V q\) is false
\(\mathrm{p} \Rightarrow \mathrm{q} \mathrm{V} \mathrm{r}\) is false then the true values of \(\mathrm{p}, \mathrm{q}\) and \(\mathrm{r}\) are respectively. (a) \(\mathrm{F}, \mathrm{T}, \mathrm{T}\) (b) \(\mathrm{T}, \mathrm{T}, \mathrm{F}\) (c) \(\mathrm{T}, \mathrm{F}, \mathrm{F}\) (d) \(\mathrm{F}, \mathrm{F}, \mathrm{F}\)
Negation of for all \(\mathrm{x}, \mathrm{p}^{\prime}\) is \(\ldots \ldots \ldots\) (a) there exists \(\mathrm{x}, \sim \mathrm{p}\) (b) for all \(\mathrm{x} ; \sim \mathrm{p}\) (c) \(\sim \mathrm{p}\) (d) \(\mathrm{p}\)
\(p \Rightarrow(q \Rightarrow p) \Rightarrow r\) is (a) Contradiction (b) tautology (c) Neither contradiction Nor tautology (d) Both contradiction \& tautology
Which one of the following is false (a) p \(\Lambda(\sim \mathrm{p})\) is a contradiction (b) \((\mathrm{p} \Rightarrow \mathrm{q}) \Leftrightarrow(\sim \mathrm{q} \Rightarrow \sim \mathrm{p})\) is a contradiction (c) \(\sim(\sim p) \Leftrightarrow p\) is a tautology (d) \(p \mathrm{~V}(\sim \mathrm{p})\) is a tautology
What do you think about this solution?
We value your feedback to improve our textbook solutions.