Chapter 20: Problem 1918
\(p \Rightarrow(q \Rightarrow p) \Rightarrow r\) is (a) Contradiction (b) tautology (c) Neither contradiction Nor tautology (d) Both contradiction \& tautology
Chapter 20: Problem 1918
\(p \Rightarrow(q \Rightarrow p) \Rightarrow r\) is (a) Contradiction (b) tautology (c) Neither contradiction Nor tautology (d) Both contradiction \& tautology
All the tools & learning materials you need for study success - in one app.
Get started for freeIf both \(\mathrm{p}\) and \(\mathrm{q}\) are false then (a) \(\mathrm{p} \Lambda \mathrm{q}\) is true (b) \(\mathrm{p} \mathrm{V} \mathrm{q}\) is false (c) \(p \Rightarrow q\) is false (d) \((\sim p) V q\) is false
\((p \Rightarrow q) \Leftrightarrow(\sim q \Rightarrow \sim p)\) is a (a) contradiction (b) tautology (c) both tautology \& contradiction (d) None of above
\((p \wedge \sim q) \Lambda(\sim p \wedge q)\) is (a) a contradiction (b) a tautology (c) neither a tautology nor a contradiction (d) both tautology and contradiction
If both \(\mathrm{p}\) and \(\mathrm{q}\) are true (a) \(\mathrm{p} \Lambda \mathrm{q}\) is true (b) \(\mathrm{p} \mathrm{V} \mathrm{q}\) is false (c) \(\mathrm{p} \Rightarrow \mathrm{q}\) is false (d) None of them
The negation of compound proposition \(p V(\sim p V q)\) is \(\ldots \ldots \ldots .\) (a) \((p \Lambda \sim q) \Lambda \sim p\) (b) \((\mathrm{p} \Lambda \sim \mathrm{p}) \mathrm{V} \sim \mathrm{q}\) (c) \((p \Lambda \sim q) V(\sim p)\) (d) \((\mathrm{p} \Lambda \sim \mathrm{q}) \mathrm{V} \sim \mathrm{p}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.