Chapter 20: Problem 1920
\((p \Rightarrow q) \Leftrightarrow(\sim q \Rightarrow \sim p)\) is a (a) contradiction (b) tautology (c) both tautology \& contradiction (d) None of above
Chapter 20: Problem 1920
\((p \Rightarrow q) \Leftrightarrow(\sim q \Rightarrow \sim p)\) is a (a) contradiction (b) tautology (c) both tautology \& contradiction (d) None of above
All the tools & learning materials you need for study success - in one app.
Get started for freeWhich one of the following is false (a) p \(\Lambda(\sim \mathrm{p})\) is a contradiction (b) \((\mathrm{p} \Rightarrow \mathrm{q}) \Leftrightarrow(\sim \mathrm{q} \Rightarrow \sim \mathrm{p})\) is a contradiction (c) \(\sim(\sim p) \Leftrightarrow p\) is a tautology (d) \(p \mathrm{~V}(\sim \mathrm{p})\) is a tautology
\(p \Rightarrow(q \Rightarrow p) \Rightarrow r\) is (a) Contradiction (b) tautology (c) Neither contradiction Nor tautology (d) Both contradiction \& tautology
If \(\mathrm{p}=\mathrm{He}\) is intelligent, \(\mathrm{q}=\mathrm{He}\) is strong. Then symbolic form of the statement "It is wrong that he is intelligent or strong" is (a) \(\sim \mathrm{p} \mathrm{V} \sim \mathrm{q}\) (b) \(\sim(\mathrm{p} \Lambda \mathrm{q})\) (c) \(\sim(p \mathrm{~V} q)\) (d) \(\mathrm{p} \Lambda \sim \mathrm{q}\)
Negation of for all \(\mathrm{x}, \mathrm{p}^{\prime}\) is \(\ldots \ldots \ldots\) (a) there exists \(\mathrm{x}, \sim \mathrm{p}\) (b) for all \(\mathrm{x} ; \sim \mathrm{p}\) (c) \(\sim \mathrm{p}\) (d) \(\mathrm{p}\)
If both \(\mathrm{p}\) and \(\mathrm{q}\) are true (a) \(\mathrm{p} \Lambda \mathrm{q}\) is true (b) \(\mathrm{p} \mathrm{V} \mathrm{q}\) is false (c) \(\mathrm{p} \Rightarrow \mathrm{q}\) is false (d) None of them
What do you think about this solution?
We value your feedback to improve our textbook solutions.