Chapter 3: Problem 166
Discriminant of the quadratic equation \(\sqrt{5} \mathrm{x}^{2}-3 \sqrt{3} \mathrm{x}-2 \sqrt{5}=0\) is (a) 67 (b) 76 (c) \(-67\) (d) \(-76\)
Chapter 3: Problem 166
Discriminant of the quadratic equation \(\sqrt{5} \mathrm{x}^{2}-3 \sqrt{3} \mathrm{x}-2 \sqrt{5}=0\) is (a) 67 (b) 76 (c) \(-67\) (d) \(-76\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf the ratio of the roots of the quadratic equation \(2 x^{2}+16 x+3 k=0\) is \(4: 5\) then \(k=\) (a) \([(2560) /(243)]\) (b) \(\overline{[(243) /(2560)]}\) (c) \([(-2560) /(243)]\) (d) \([(-243) /(2560)]\)
The sum of all the roots of \(|x-5|^{2}-|x-5|-6=0\) is (a) 10 (b) 6 (c) 0 (d) None
The quadratic equations having the roots \([1 /\\{10-\sqrt{7} 2\\}] \&[1 /\\{10+6 \sqrt{2}\\}]\) is (a) \(28 \mathrm{x}^{2}-20 \mathrm{x}+1=0\) (b) \(20 \mathrm{x}^{2}-28 \mathrm{x}+1=0\) (c) \(x^{2}-20 x+28=0\) (d) \(x^{2}-28 x+20=0\)
If \(\tan A \& \tan B\) are roots of \(x^{2}-p x+q=0\) then the value of \(\cos ^{2}(\mathrm{~A}+\mathrm{B})=\) (a) \(\left[(1-q)^{2} /\left\\{p^{2}+(1-q)^{2}\right\\}\right]\) (b) \(\left[p^{2} /\left\\{p^{2}+(1-q)^{2}\right\\}\right]\) (c) \(\left[(1-q)^{2} /\left(p^{2}-q^{2}\right)\right]\) (d) \(\left[\mathrm{p}^{2} /\left(\mathrm{p}^{2}+\mathrm{q}^{2}\right)\right]\)
If the sum of the roots of \(a x^{2}+b x+c=0\) is equal to the sum of the squares of their reciprocals then \(\mathrm{bc}^{2}, \mathrm{ca}^{2}, \mathrm{ab}^{2}\) are in (a) A.P (b) G,P (c) H.P (d) None of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.