Chapter 3: Problem 168
If the sum of the roots of \(a x^{2}+b x+c=0\) is equal to the sum of the squares of their reciprocals then \(\mathrm{bc}^{2}, \mathrm{ca}^{2}, \mathrm{ab}^{2}\) are in (a) A.P (b) G,P (c) H.P (d) None of these
Chapter 3: Problem 168
If the sum of the roots of \(a x^{2}+b x+c=0\) is equal to the sum of the squares of their reciprocals then \(\mathrm{bc}^{2}, \mathrm{ca}^{2}, \mathrm{ab}^{2}\) are in (a) A.P (b) G,P (c) H.P (d) None of these
All the tools & learning materials you need for study success - in one app.
Get started for freeFor the equation \(\ell \mathrm{x}^{2}+\mathrm{mx}+\mathrm{n} \pm 0, \ell \neq 0\) If \(\alpha \& \beta\) are roots of equation and \(m^{3}+\ell^{2} n+\ell n^{2}=3 \ell m n\) then (a) \(\alpha=\beta^{2}\) (b) \(\alpha^{3}=\beta\) (c) \(\alpha+\beta=\alpha \beta\) (d) \(\alpha \beta=1\)
The quadratic equations having the roots \([1 /\\{10-\sqrt{7} 2\\}] \&[1 /\\{10+6 \sqrt{2}\\}]\) is (a) \(28 \mathrm{x}^{2}-20 \mathrm{x}+1=0\) (b) \(20 \mathrm{x}^{2}-28 \mathrm{x}+1=0\) (c) \(x^{2}-20 x+28=0\) (d) \(x^{2}-28 x+20=0\)
\(a, b, \in R, a \neq b\) roots of equation \((a-b) x^{2}+5(a+b) x-2\) \((a-b)=0\) are (a) Real and distinct (b) Complex (c) real and equal (d) None
The solution set of equation \(3\left[x^{2}+\left(1 / x^{2}\right)\right]+16[x+(1 / x)]+26=0\) is (a) \([-1,\\{(-1) / 3\\},-3]\) (b) \([\overline{1,(1 / 3), 3}]\) (c) \([-1,(1 / 3), 3]\) (d) \([1,\\{(-1) / 3\\}, 3]\)
If \(\alpha \& \beta\) are roots of equation \(\mathrm{x}^{2}+\mathrm{x}+1=0\) then the equation whose roots are \(\alpha^{19} \& \alpha^{7}\) is \(\ldots \ldots \ldots\) (a) \(x^{2}-x+1=0\) (b) \(x^{2}+x+1=0\) (c) \(x^{2}+x+3=0\) (d) \(x^{2}-x+3=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.