Chapter 3: Problem 168
If the sum of the roots of \(a x^{2}+b x+c=0\) is equal to the sum of the squares of their reciprocals then \(\mathrm{bc}^{2}, \mathrm{ca}^{2}, \mathrm{ab}^{2}\) are in (a) A.P (b) G,P (c) H.P (d) None of these
Chapter 3: Problem 168
If the sum of the roots of \(a x^{2}+b x+c=0\) is equal to the sum of the squares of their reciprocals then \(\mathrm{bc}^{2}, \mathrm{ca}^{2}, \mathrm{ab}^{2}\) are in (a) A.P (b) G,P (c) H.P (d) None of these
All the tools & learning materials you need for study success - in one app.
Get started for freeThe roots of equation a \((b-c) x^{2}+b(c-a) x+c(a-b)=0\) are equal, then \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are in (a) A. P. (b) G. P. (c) H. P. (d) None of these
For the equation \(\mathrm{x}^{2}+\mathrm{k}^{2}=(2 \mathrm{k}+2) \mathrm{x}, \mathrm{k} \in \mathrm{R}\) roots are complex then (a) \(\overline{k=\\{(-1) / 2\\}}\) (b) \(k>\\{(-1) / 2\\}\) (c) \(k>\\{(-1) / 2\\}\) (d) \(\\{(-1) / 2\\}<\mathrm{k}<0\)
If the sum of the two roots of the equation \([1 /(x+a)]+[1 /(x+b)]=(1 / k)\) is zero then their Product is (a) \(\overline{(1 / 2)\left(a^{2}+b^{2}\right)}\) (b) \(\\{(-1) / 2\\}(a+b)^{2}\) (c) \([\\{a+b\\} / 2]^{2}\) (d) None
Construct the quadratic equation whose roots are three times the roots of \(5 \mathrm{x}^{2}-3 \mathrm{x}+3=0\) (a) \(5 x^{2}-9 x+27=0\) (b) \(5 x^{2}+9 x+27=0\) (c) \(5 x^{2}-9 x-27=0\) (d) \(5 \mathrm{x}^{2}+9 \mathrm{x}-27=0\)
If \(\tan A \& \tan B\) are roots of \(x^{2}-p x+q=0\) then the value of \(\cos ^{2}(\mathrm{~A}+\mathrm{B})=\) (a) \(\left[(1-q)^{2} /\left\\{p^{2}+(1-q)^{2}\right\\}\right]\) (b) \(\left[p^{2} /\left\\{p^{2}+(1-q)^{2}\right\\}\right]\) (c) \(\left[(1-q)^{2} /\left(p^{2}-q^{2}\right)\right]\) (d) \(\left[\mathrm{p}^{2} /\left(\mathrm{p}^{2}+\mathrm{q}^{2}\right)\right]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.