Chapter 3: Problem 173
If \(\alpha \& \beta\) are roots of quadratic equation \(x^{2}+13 x+8=0\) then the value of \(\alpha^{4}+\beta^{4}=\) (a) 23281 (b) 23218 (c) 23128 (d) 23182
Chapter 3: Problem 173
If \(\alpha \& \beta\) are roots of quadratic equation \(x^{2}+13 x+8=0\) then the value of \(\alpha^{4}+\beta^{4}=\) (a) 23281 (b) 23218 (c) 23128 (d) 23182
All the tools & learning materials you need for study success - in one app.
Get started for freeFor the equation \(\mathrm{x}^{2}+\mathrm{k}^{2}=(2 \mathrm{k}+2) \mathrm{x}, \mathrm{k} \in \mathrm{R}\) roots are complex then (a) \(\overline{k=\\{(-1) / 2\\}}\) (b) \(k>\\{(-1) / 2\\}\) (c) \(k>\\{(-1) / 2\\}\) (d) \(\\{(-1) / 2\\}<\mathrm{k}<0\)
If the sum of the two roots of the equation \([1 /(x+a)]+[1 /(x+b)]=(1 / k)\) is zero then their Product is (a) \(\overline{(1 / 2)\left(a^{2}+b^{2}\right)}\) (b) \(\\{(-1) / 2\\}(a+b)^{2}\) (c) \([\\{a+b\\} / 2]^{2}\) (d) None
If \(\alpha \& \beta\) are the roots of the equation \(x^{2}-x+1=0\) then \(\alpha^{2009}+\beta^{2009}=\) (a) \(-1\) (b) 1 (c) \(-2\) (d) 2
If \(\mathrm{b}^{2}=\) ac, equation \(\mathrm{ax}^{2}+2 \mathrm{bx}+\mathrm{c}=0\) and \(\mathrm{d} \mathrm{x}^{2}+2 \mathrm{ex}+\mathrm{f}=0\) have common roots then \((\mathrm{d} / \mathrm{a}),(\mathrm{e} / \mathrm{b}),(\mathrm{f} / \mathrm{c})\) are in (a) A.P. (b) G.P. (c) H.P. (d) None of these
The sum of the roots of the equation \(\mathrm{x}^{2}-3|\mathrm{x}|-10=0\) is (a) 3 (b) \(-3\) (c) \(-10\) (d) 0
What do you think about this solution?
We value your feedback to improve our textbook solutions.