Chapter 3: Problem 173
If \(\alpha \& \beta\) are roots of quadratic equation \(x^{2}+13 x+8=0\) then the value of \(\alpha^{4}+\beta^{4}=\) (a) 23281 (b) 23218 (c) 23128 (d) 23182
Chapter 3: Problem 173
If \(\alpha \& \beta\) are roots of quadratic equation \(x^{2}+13 x+8=0\) then the value of \(\alpha^{4}+\beta^{4}=\) (a) 23281 (b) 23218 (c) 23128 (d) 23182
All the tools & learning materials you need for study success - in one app.
Get started for freeAll the values of \(\mathrm{m}\) for which both roots of the equation \(\mathrm{x}^{2}-2 \mathrm{mx}+\mathrm{m}^{2}-1=0\) are greater then \(-2\) but less than 4 lie in interval (a) \(\mathrm{m}<3\) (b) \(-1>\mathrm{m}<3\) (c) \(1<\mathrm{m}<4\) (d) \(-2<\mathrm{m}<\mathrm{o}\)
If the roots of the equation \(b x^{2}+c x+a=0\) be imaginary then for all real values of \(x\) the expression \(3 b^{2} x^{2}+6 b c x+2 c^{2}\) is (a) \(<4 \mathrm{ab}\) (b) \(>-4 \mathrm{ab}\) (c) \(-4 \mathrm{ab}\) (d) \(>4 \mathrm{ab}\)
If \(\alpha+\beta=5 \alpha^{2}=5 \alpha-3\) and \(\beta^{2}=5 \beta-3\) then the equation whose roots are \((\alpha / \beta)\) and \((\beta / \alpha)\) is (a) \(3 x^{2}-19 x+3=0\) (b) \(x^{2}+5 x-3=0\) (c) \(x^{2}-5 x+3=0\) (d) \(3 x^{2}-25 x+3=0\)
If one root of the equation \(4 \mathrm{x}^{2}-6 \mathrm{x}+\mathrm{p}=0\) is \(\mathrm{q}+2 \mathrm{i}\), where \(\mathrm{p}, \mathrm{q} \in \mathrm{R}\) then \(\mathrm{p}+\mathrm{q}=\) (a) 10 (b) 19 (c) \(-24\) (d) \(-32\)
For which value of \(b\), equation \(x^{2}+b x-1=0\) and \(\mathrm{x}^{2}+\mathrm{x}+\mathrm{b}=0\) have a common root. (a) \(-\sqrt{2}\) (b) \(-\mathrm{i} \sqrt{3}\) (c) \(\mathrm{i} \sqrt{5}\) (d) \(\sqrt{2}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.