Chapter 3: Problem 175
If the ratio of the roots of the quadratic equation \(2 x^{2}+16 x+3 k=0\) is \(4: 5\) then \(k=\) (a) \([(2560) /(243)]\) (b) \(\overline{[(243) /(2560)]}\) (c) \([(-2560) /(243)]\) (d) \([(-243) /(2560)]\)
Chapter 3: Problem 175
If the ratio of the roots of the quadratic equation \(2 x^{2}+16 x+3 k=0\) is \(4: 5\) then \(k=\) (a) \([(2560) /(243)]\) (b) \(\overline{[(243) /(2560)]}\) (c) \([(-2560) /(243)]\) (d) \([(-243) /(2560)]\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe minimum value of \((\mathrm{x}+\mathrm{a})^{2}+(\mathrm{x}+\mathrm{b})^{2}+(\mathrm{x}+\mathrm{c})^{2}\) will be at \(\mathrm{x}\) equal to (a) \([(a+b+c) / 3]\) (b) \([\\{-(a+b+c)\\} / 3]\) (c) \(\sqrt{(a b c)}\) (d) \(a^{2}+b^{2}+c^{2}\)
If \(\alpha \& \beta\) are the roots of the equation \(x^{2}-x+1=0\) then \(\alpha^{2009}+\beta^{2009}=\) (a) \(-1\) (b) 1 (c) \(-2\) (d) 2
If the roots of the quadratic equation \((2 \mathrm{k}+3) \mathrm{x}^{2}+2(\mathrm{k}+3)\) \(x+(k+5)=0\\{k \in R, k \neq\\{(-3) / 2\\}\\}\) are equal, then \(\mathrm{K}=\) (a) 1,6 (b) \(-1,-6\) (c) \(-1,6\) (d) \(1,-6\)
If \(0
The value of \(\mathrm{k}\) for which the quadratic equation \(\mathrm{k} \mathrm{x}^{2}+1=\mathrm{k} \mathrm{x}+3 \mathrm{x}-11 \mathrm{x}^{2}\) has real and equal roots are (a) \(\\{-11,-3\\}\) (b) \(\\{5,7\\}\) (c) \(\\{5,-7\\}\) (d) \(\\{-5,-7\\}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.