Chapter 3: Problem 175
If the ratio of the roots of the quadratic equation \(2 x^{2}+16 x+3 k=0\) is \(4: 5\) then \(k=\) (a) \([(2560) /(243)]\) (b) \(\overline{[(243) /(2560)]}\) (c) \([(-2560) /(243)]\) (d) \([(-243) /(2560)]\)
Chapter 3: Problem 175
If the ratio of the roots of the quadratic equation \(2 x^{2}+16 x+3 k=0\) is \(4: 5\) then \(k=\) (a) \([(2560) /(243)]\) (b) \(\overline{[(243) /(2560)]}\) (c) \([(-2560) /(243)]\) (d) \([(-243) /(2560)]\)
All the tools & learning materials you need for study success - in one app.
Get started for freeHardik and Shivang attempted to solve a quadratic equation Hardik made a mistake in writing down the constant term and ended up in roots \((4,3)\) Shivang made a mistake in writting down coefficient of \(x\) to get roots \((3,2)\) The correct roots of equation are (a) \(-4,3\) (b) 6,1 (c) 4,3 (d) \(-6,-1\)
For all \(x \in R\) the number of triplet \((\ell, m, n)\) satisfying equation \(\ell \cos 2 \mathrm{x}+\mathrm{m} \sin ^{2} \mathrm{x}+\mathrm{n}=0\) (a) 2 (b) 4 (c) 6 (d) infinite
If the sum of the two roots of the equation \([1 /(x+a)]+[1 /(x+b)]=(1 / k)\) is zero then their Product is (a) \(\overline{(1 / 2)\left(a^{2}+b^{2}\right)}\) (b) \(\\{(-1) / 2\\}(a+b)^{2}\) (c) \([\\{a+b\\} / 2]^{2}\) (d) None
The number of real values of \(\mathrm{x}\) satisfying the equation \(3\left[x^{2}+\left(1 / x^{2}\right)\right]-16[x+(1 / x)]+26=0\) is (a) 1 (b) 2 (c) 3 (d) 4
If \(\alpha+\beta=5 \alpha^{2}=5 \alpha-3\) and \(\beta^{2}=5 \beta-3\) then the equation whose roots are \((\alpha / \beta)\) and \((\beta / \alpha)\) is (a) \(3 x^{2}-19 x+3=0\) (b) \(x^{2}+5 x-3=0\) (c) \(x^{2}-5 x+3=0\) (d) \(3 x^{2}-25 x+3=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.