Chapter 3: Problem 177
If one root of the equation \(a X^{2}-6 x+c+9=0\) \((a, c \in R, a \neq 0)\) is \(3-5 i\) then \(a=\) (a) 1,25 (b) \(-1,25\) (c) \(1,-25\) (d) \(-1,-25\)
Chapter 3: Problem 177
If one root of the equation \(a X^{2}-6 x+c+9=0\) \((a, c \in R, a \neq 0)\) is \(3-5 i\) then \(a=\) (a) 1,25 (b) \(-1,25\) (c) \(1,-25\) (d) \(-1,-25\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\alpha, \beta\) are roots of equation \(\mathrm{x}^{2}-\mathrm{p} \mathrm{x}+\mathrm{r}=0\) and \((\alpha / 2), \alpha \beta\) are roots of equation \(\mathrm{x}^{2}-\mathrm{qx}+\mathrm{r}=0\) then \(\mathrm{r}=\ldots \ldots\) (a) \((2 / 9)(\mathrm{p}-\mathrm{q})(2 \mathrm{q}-\mathrm{p})\) (b) \((2 / 9)(q-p)(2 p-q)\) (c) \((2 / 9)(q-2 p)(2 q-p)\) (d) \((2 / 9)(2 \mathrm{p}-\mathrm{q})(2 \mathrm{q}-\mathrm{p})\)
For the equation \(\mathrm{x}^{2}+\mathrm{k}^{2}=(2 \mathrm{k}+2) \mathrm{x}, \mathrm{k} \in \mathrm{R}\) roots are complex then (a) \(\overline{k=\\{(-1) / 2\\}}\) (b) \(k>\\{(-1) / 2\\}\) (c) \(k>\\{(-1) / 2\\}\) (d) \(\\{(-1) / 2\\}<\mathrm{k}<0\)
The number of values of \(\mathrm{x}\) in the interval \([0,3 \pi]\) Satisfying the equation \(2 \sin ^{2} \mathrm{x}+5 \sin \mathrm{x}-3=0\) is (a) 6 (b) 1 (c) 2 (d) 4
If \(\mathrm{f}(\mathrm{x})=\mathrm{x}-[\mathrm{x}], \mathrm{x} \in \mathrm{R}-\\{0\\}\) where \([\mathrm{x}]=\) the greatest integer not greater than \(\mathrm{x}\), than number of solution \(\mathrm{f}(\mathrm{x})+\mathrm{f}(1 / \mathrm{x})=1 \ldots \ldots \ldots \ldots \ldots\) (a) 0 (b) 1 (c) 2 (d) infinite
If the product of roots of equation \(x^{2}-5 k x+4 e^{4 \log k}-3=0\) is 61 then \(\mathrm{k}\) is \(\ldots \ldots \ldots \ldots\) (a) 1 (b) 2 (c) 3 (d) 4
What do you think about this solution?
We value your feedback to improve our textbook solutions.