Chapter 3: Problem 177
If one root of the equation \(a X^{2}-6 x+c+9=0\) \((a, c \in R, a \neq 0)\) is \(3-5 i\) then \(a=\) (a) 1,25 (b) \(-1,25\) (c) \(1,-25\) (d) \(-1,-25\)
Chapter 3: Problem 177
If one root of the equation \(a X^{2}-6 x+c+9=0\) \((a, c \in R, a \neq 0)\) is \(3-5 i\) then \(a=\) (a) 1,25 (b) \(-1,25\) (c) \(1,-25\) (d) \(-1,-25\)
All the tools & learning materials you need for study success - in one app.
Get started for free
If the roots of the quadratic equation \((2 \mathrm{k}+3) \mathrm{x}^{2}+2(\mathrm{k}+3)\) \(x+(k+5)=0\\{k \in R, k \neq\\{(-3) / 2\\}\\}\) are equal, then \(\mathrm{K}=\) (a) 1,6 (b) \(-1,-6\) (c) \(-1,6\) (d) \(1,-6\)
The minimum value of \((\mathrm{x}+\mathrm{a})^{2}+(\mathrm{x}+\mathrm{b})^{2}+(\mathrm{x}+\mathrm{c})^{2}\) will be at \(\mathrm{x}\) equal to (a) \([(a+b+c) / 3]\) (b) \([\\{-(a+b+c)\\} / 3]\) (c) \(\sqrt{(a b c)}\) (d) \(a^{2}+b^{2}+c^{2}\)
The number of values of \(\mathrm{x}\) in the interval \([0,3 \pi]\) Satisfying the equation \(2 \sin ^{2} \mathrm{x}+5 \sin \mathrm{x}-3=0\) is (a) 6 (b) 1 (c) 2 (d) 4
If the equation \(x^{2}-m(2 x-8)-15=0\) has equal roots then \(\mathrm{m}=\) (a) \(3,-5\) (b) \(-3,5\) (c) 3,5 (d) \(-3,-5\)
If \(\alpha \& \beta\) are the roots of the equation \(x^{2}-x+1=0\) then \(\alpha^{2009}+\beta^{2009}=\) (a) \(-1\) (b) 1 (c) \(-2\) (d) 2
What do you think about this solution?
We value your feedback to improve our textbook solutions.