Chapter 3: Problem 178
The roots of equation a \((b-c) x^{2}+b(c-a) x+c(a-b)=0\) are equal, then \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are in (a) A. P. (b) G. P. (c) H. P. (d) None of these
Chapter 3: Problem 178
The roots of equation a \((b-c) x^{2}+b(c-a) x+c(a-b)=0\) are equal, then \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are in (a) A. P. (b) G. P. (c) H. P. (d) None of these
All the tools & learning materials you need for study success - in one app.
Get started for freeIt one root of the equation \(\mathrm{x}^{2}+\mathrm{px}+12=0\) is 4 , while the equation \(\mathrm{x}^{2}+\mathrm{px}+\mathrm{q}=0\) has equal roots, then the value of \(\mathrm{q}\) is (a) \((49 / 4)\) (b) 12 (c) 3 (d) 4
The sum of the roots of the equation \(\mathrm{x}^{2}-3|\mathrm{x}|-10=0\) is (a) 3 (b) \(-3\) (c) \(-10\) (d) 0
If \(\alpha \& \beta\) are roots of quadratic equation \(x^{2}+13 x+8=0\) then the value of \(\alpha^{4}+\beta^{4}=\) (a) 23281 (b) 23218 (c) 23128 (d) 23182
If the roots of the equation \(b x^{2}+c x+a=0\) be imaginary then for all real values of \(x\) the expression \(3 b^{2} x^{2}+6 b c x+2 c^{2}\) is (a) \(<4 \mathrm{ab}\) (b) \(>-4 \mathrm{ab}\) (c) \(-4 \mathrm{ab}\) (d) \(>4 \mathrm{ab}\)
If \(\tan A \& \tan B\) are roots of \(x^{2}-p x+q=0\) then the value of \(\cos ^{2}(\mathrm{~A}+\mathrm{B})=\) (a) \(\left[(1-q)^{2} /\left\\{p^{2}+(1-q)^{2}\right\\}\right]\) (b) \(\left[p^{2} /\left\\{p^{2}+(1-q)^{2}\right\\}\right]\) (c) \(\left[(1-q)^{2} /\left(p^{2}-q^{2}\right)\right]\) (d) \(\left[\mathrm{p}^{2} /\left(\mathrm{p}^{2}+\mathrm{q}^{2}\right)\right]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.