Chapter 3: Problem 178
The roots of equation a \((b-c) x^{2}+b(c-a) x+c(a-b)=0\) are equal, then \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are in (a) A. P. (b) G. P. (c) H. P. (d) None of these
Chapter 3: Problem 178
The roots of equation a \((b-c) x^{2}+b(c-a) x+c(a-b)=0\) are equal, then \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are in (a) A. P. (b) G. P. (c) H. P. (d) None of these
All the tools & learning materials you need for study success - in one app.
Get started for freeThe sum of the roots of the equation \(\mathrm{x}^{2}-3|\mathrm{x}|-10=0\) is (a) 3 (b) \(-3\) (c) \(-10\) (d) 0
If \(\alpha \& \beta\) are roots of quadratic equation \(x^{2}+13 x+8=0\) then the value of \(\alpha^{4}+\beta^{4}=\) (a) 23281 (b) 23218 (c) 23128 (d) 23182
If \(\alpha, \beta\) are roots of \(x^{2}+p x+q=0\) and \(x^{2 n}+p^{n} x^{n}+q^{n}=0\) and if \((\alpha / \beta)\) is one root of \(\mathrm{x}^{\mathrm{n}}+1+(\mathrm{x}+1)^{\mathrm{n}}=0\) then \(\mathrm{n}\) must be (a) even integer (b) odd integer (c) rational but not integer (d) None of these
Find the value of \(\mathrm{a}\), for which the sum of square of roots of equation \(\mathrm{x}^{2}-(\mathrm{a}-2) \mathrm{x}-\mathrm{a}-1=0\) assume the least value (a) 0 (b) 1 (c) 2 (d) 3
If \(0
What do you think about this solution?
We value your feedback to improve our textbook solutions.