Chapter 3: Problem 190
\(a, b, \in R, a \neq b\) roots of equation \((a-b) x^{2}+5(a+b) x-2\) \((a-b)=0\) are (a) Real and distinct (b) Complex (c) real and equal (d) None
Chapter 3: Problem 190
\(a, b, \in R, a \neq b\) roots of equation \((a-b) x^{2}+5(a+b) x-2\) \((a-b)=0\) are (a) Real and distinct (b) Complex (c) real and equal (d) None
All the tools & learning materials you need for study success - in one app.
Get started for freeSolution set of equation \(\mathrm{x}=\sqrt{[12+\sqrt{\\{} 12+\sqrt{(} 12)\\}] \ldots \ldots . . \text { up to }}\) \(\infty\) is (a) 4 (b) \(-4\) (c) 3 (d) \(-3\)
If \(\alpha, \beta\) are roots of \(x^{2}+p x+q=0\) and \(x^{2 n}+p^{n} x^{n}+q^{n}=0\) and if \((\alpha / \beta)\) is one root of \(\mathrm{x}^{\mathrm{n}}+1+(\mathrm{x}+1)^{\mathrm{n}}=0\) then \(\mathrm{n}\) must be (a) even integer (b) odd integer (c) rational but not integer (d) None of these
The roots of equation a \((b-c) x^{2}+b(c-a) x+c(a-b)=0\) are equal, then \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are in (a) A. P. (b) G. P. (c) H. P. (d) None of these
The quadratic equation whose roots are A. \(\mathrm{M}\) and positive G. \(\mathrm{M}\) of the roots of \(\mathrm{x}^{2}-5 \mathrm{x}+4=0\) is (a) \(x^{2}+9 x+5=0\) (b) \(2 \mathrm{x}^{2}+9 \mathrm{x}+10=0\) (c) \(2 x^{2}-9 x+10=0\) (d) \(2 x^{2}-9 x-10=0\)
If the equation \(x^{2}-m(2 x-8)-15=0\) has equal roots then \(\mathrm{m}=\) (a) \(3,-5\) (b) \(-3,5\) (c) 3,5 (d) \(-3,-5\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.