Chapter 3: Problem 190
\(a, b, \in R, a \neq b\) roots of equation \((a-b) x^{2}+5(a+b) x-2\) \((a-b)=0\) are (a) Real and distinct (b) Complex (c) real and equal (d) None
Chapter 3: Problem 190
\(a, b, \in R, a \neq b\) roots of equation \((a-b) x^{2}+5(a+b) x-2\) \((a-b)=0\) are (a) Real and distinct (b) Complex (c) real and equal (d) None
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\alpha, \beta\) are roots of \(x^{2}+p x+q=0\) and \(x^{2 n}+p^{n} x^{n}+q^{n}=0\) and if \((\alpha / \beta)\) is one root of \(\mathrm{x}^{\mathrm{n}}+1+(\mathrm{x}+1)^{\mathrm{n}}=0\) then \(\mathrm{n}\) must be (a) even integer (b) odd integer (c) rational but not integer (d) None of these
The sum of the roots of the equation \(\mathrm{x}^{2}-3|\mathrm{x}|-10=0\) is (a) 3 (b) \(-3\) (c) \(-10\) (d) 0
Discriminant of the quadratic equation \(\sqrt{5} \mathrm{x}^{2}-3 \sqrt{3} \mathrm{x}-2 \sqrt{5}=0\) is (a) 67 (b) 76 (c) \(-67\) (d) \(-76\)
The number of real values of \(\mathrm{x}\) satisfying the equation \(3\left[x^{2}+\left(1 / x^{2}\right)\right]-16[x+(1 / x)]+26=0\) is (a) 1 (b) 2 (c) 3 (d) 4
If the difference of the roots of the equation \(x^{2}-p x+q=0\) is 1 then (a) \(p^{2}+4 q^{2}=(1+2 q)^{2}\) (b) \(\mathrm{q}^{2}+4 \mathrm{p}^{2}=(1+2 \mathrm{q})^{2}\) (c) \(p^{2}-4 q^{2}=(1+2 q)^{2}\) (d) \(q^{2}+4 p^{2}=(1-2 q)^{2}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.