Chapter 3: Problem 191
Solution set of equation \(\mathrm{x}=\sqrt{[12+\sqrt{\\{} 12+\sqrt{(} 12)\\}] \ldots \ldots . . \text { up to }}\) \(\infty\) is (a) 4 (b) \(-4\) (c) 3 (d) \(-3\)
Chapter 3: Problem 191
Solution set of equation \(\mathrm{x}=\sqrt{[12+\sqrt{\\{} 12+\sqrt{(} 12)\\}] \ldots \ldots . . \text { up to }}\) \(\infty\) is (a) 4 (b) \(-4\) (c) 3 (d) \(-3\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf the sum of the two roots of the equation \([1 /(x+a)]+[1 /(x+b)]=(1 / k)\) is zero then their Product is (a) \(\overline{(1 / 2)\left(a^{2}+b^{2}\right)}\) (b) \(\\{(-1) / 2\\}(a+b)^{2}\) (c) \([\\{a+b\\} / 2]^{2}\) (d) None
If \(\alpha, \beta\) are roots of \(8 \mathrm{x}^{2}-3 \mathrm{x}+27=0\) then \(\left(\alpha^{2} / \beta\right)^{(1 / 3)}+\left(\beta^{2} / \alpha\right)^{(1 / 3)}=\) (a) \((1 / 3)\) (b) \((7 / 2)\) (c) 4 (d) \((1 / 4)\)
The solution set of equation \([(\mathrm{x}-\mathrm{a}) /(\mathrm{x}-\mathrm{b})]+\) \([(x-b) /(x-a)]=(a / b)+(b / a),(a \neq b)\) is (a) \(\\{\mathrm{a}-\mathrm{b}, 0\\}\) (b) \(\\{(\mathrm{a} / \mathrm{b}), 0\\}\) (c) \(\\{a+b, 0\\}\) (d) \(\\{\mathrm{ab}, 0\\}\)
If the roots of the equation \(x^{2}-b x+c=0\) be two consecutive integers then \(b^{2}-4 c=\) (a) \(-2\) (b) \(-3\) (c) 3 (d) 1
In \(\triangle \mathrm{ABC}, \mathrm{m} \angle \mathrm{C}=(\pi / 2)\) If \(\tan (\mathrm{A} / 2)\) and \(\tan (\mathrm{B} / 2)\) are the roots of \(a x^{2}+b x+c=0, a \neq 0\) then (a) \(b=a+c\) (b) \(b=c\) (c) \(c=a+b\) (d) \(a=b+c\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.