Chapter 3: Problem 191
Solution set of equation \(\mathrm{x}=\sqrt{[12+\sqrt{\\{} 12+\sqrt{(} 12)\\}] \ldots \ldots . . \text { up to }}\) \(\infty\) is (a) 4 (b) \(-4\) (c) 3 (d) \(-3\)
Chapter 3: Problem 191
Solution set of equation \(\mathrm{x}=\sqrt{[12+\sqrt{\\{} 12+\sqrt{(} 12)\\}] \ldots \ldots . . \text { up to }}\) \(\infty\) is (a) 4 (b) \(-4\) (c) 3 (d) \(-3\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf the product of roots of equation \(x^{2}-5 k x+4 e^{4 \log k}-3=0\) is 61 then \(\mathrm{k}\) is \(\ldots \ldots \ldots \ldots\) (a) 1 (b) 2 (c) 3 (d) 4
If the sum of the two roots of the equation \([1 /(x+a)]+[1 /(x+b)]=(1 / k)\) is zero then their Product is (a) \(\overline{(1 / 2)\left(a^{2}+b^{2}\right)}\) (b) \(\\{(-1) / 2\\}(a+b)^{2}\) (c) \([\\{a+b\\} / 2]^{2}\) (d) None
If \(0 \leq \mathrm{x} \leq \pi\) and \(16^{(\sin ) 2 \mathrm{x}}+16^{(\cos ) 2 \mathrm{x}}=10\) then \(\mathrm{x}=\) (a) \((\pi / 3)\) (b) \((\pi / 2)\) (c) \((\pi / 4)\) (d) \((3 \pi / 4)\)
If the roots of the quadratic equation \((2 \mathrm{k}+3) \mathrm{x}^{2}+2(\mathrm{k}+3)\) \(x+(k+5)=0\\{k \in R, k \neq\\{(-3) / 2\\}\\}\) are equal, then \(\mathrm{K}=\) (a) 1,6 (b) \(-1,-6\) (c) \(-1,6\) (d) \(1,-6\)
For all \(x \in R\) the number of triplet \((\ell, m, n)\) satisfying equation \(\ell \cos 2 \mathrm{x}+\mathrm{m} \sin ^{2} \mathrm{x}+\mathrm{n}=0\) (a) 2 (b) 4 (c) 6 (d) infinite
What do you think about this solution?
We value your feedback to improve our textbook solutions.