Chapter 3: Problem 194
For equation \(2 \mathrm{x}^{2}+16 \mathrm{x}+3 \mathrm{k}=0\) sum of the squares of roots is 10 then \(\mathrm{k}=\) (a) 12 (b) 15 (c) 18 (d) 21
Chapter 3: Problem 194
For equation \(2 \mathrm{x}^{2}+16 \mathrm{x}+3 \mathrm{k}=0\) sum of the squares of roots is 10 then \(\mathrm{k}=\) (a) 12 (b) 15 (c) 18 (d) 21
All the tools & learning materials you need for study success - in one app.
Get started for free
The solution set of equation \(3\left[x^{2}+\left(1 / x^{2}\right)\right]+16[x+(1 / x)]+26=0\) is (a) \([-1,\\{(-1) / 3\\},-3]\) (b) \([\overline{1,(1 / 3), 3}]\) (c) \([-1,(1 / 3), 3]\) (d) \([1,\\{(-1) / 3\\}, 3]\)
If \(\alpha, \beta\) are roots of equation \(a x^{2}+b x+c=0\) then value of \((\alpha a+b)^{-2}+(\beta a+b)^{-2}\) is (a) \(\left[\left(b^{2}-4 a c\right) /\left(a^{2} c^{2}\right)\right]\) (b) \(\left[\left(b^{2}-a c\right) /\left(a^{2} c^{2}\right)\right]\) (c) \(\left[\left(b^{2}-2 a c\right) /\left(a^{2} c^{2}\right)\right]\) (d) \(\left[\left(b^{2}+2 a c\right) /\left(a^{2} c^{2}\right)\right]\)
If \(\mathrm{f}(\mathrm{x})=\mathrm{x}-[\mathrm{x}], \mathrm{x} \in \mathrm{R}-\\{0\\}\) where \([\mathrm{x}]=\) the greatest integer not greater than \(\mathrm{x}\), than number of solution \(\mathrm{f}(\mathrm{x})+\mathrm{f}(1 / \mathrm{x})=1 \ldots \ldots \ldots \ldots \ldots\) (a) 0 (b) 1 (c) 2 (d) infinite
For which value of \(b\), equation \(x^{2}+b x-1=0\) and \(\mathrm{x}^{2}+\mathrm{x}+\mathrm{b}=0\) have a common root. (a) \(-\sqrt{2}\) (b) \(-\mathrm{i} \sqrt{3}\) (c) \(\mathrm{i} \sqrt{5}\) (d) \(\sqrt{2}\)
If \(f(x)=2 x^{3}+m x^{2}-13 x+n\) and \((x-2),(x-3)\) are factor of \(\mathrm{f}(\mathrm{x})\) then \((\mathrm{m}, \mathrm{n})=\) (a) \((-5,-30)\) (b) \((-5,30)\) (c) \((5,30)\) (d) \((5,-30)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.