Chapter 3: Problem 194
For equation \(2 \mathrm{x}^{2}+16 \mathrm{x}+3 \mathrm{k}=0\) sum of the squares of roots is 10 then \(\mathrm{k}=\) (a) 12 (b) 15 (c) 18 (d) 21
Chapter 3: Problem 194
For equation \(2 \mathrm{x}^{2}+16 \mathrm{x}+3 \mathrm{k}=0\) sum of the squares of roots is 10 then \(\mathrm{k}=\) (a) 12 (b) 15 (c) 18 (d) 21
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(0 \leq \mathrm{x} \leq \pi\) and \(16^{(\sin ) 2 \mathrm{x}}+16^{(\cos ) 2 \mathrm{x}}=10\) then \(\mathrm{x}=\) (a) \((\pi / 3)\) (b) \((\pi / 2)\) (c) \((\pi / 4)\) (d) \((3 \pi / 4)\)
If \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are rational numbers then the roots of equation \(a b c^{2} x^{2}+3 a^{2} c x+b^{2} c x-6 a^{2}-a b+2 b^{2}=0\) are \(\ldots \ldots \ldots\) (a) imaginary (b) equals (c) rational (d) irrational
If roots of equation \(x^{2}-2 a x+a^{2}+a-3=0\) are real and less than 3 then........... (a) \(a<2\) (b) \(2 \leq \mathrm{a} \leq 3\) (c) \(3<\mathrm{a} \leq 4\) (d) \(a>4\)
If \(\alpha, \beta\) are roots of equation \(\mathrm{x}^{2}-\mathrm{p} \mathrm{x}+\mathrm{r}=0\) and \((\alpha / 2), \alpha \beta\) are roots of equation \(\mathrm{x}^{2}-\mathrm{qx}+\mathrm{r}=0\) then \(\mathrm{r}=\ldots \ldots\) (a) \((2 / 9)(\mathrm{p}-\mathrm{q})(2 \mathrm{q}-\mathrm{p})\) (b) \((2 / 9)(q-p)(2 p-q)\) (c) \((2 / 9)(q-2 p)(2 q-p)\) (d) \((2 / 9)(2 \mathrm{p}-\mathrm{q})(2 \mathrm{q}-\mathrm{p})\)
\(\log _{\mathrm{a}}((\mathrm{x}) 2-4 \mathrm{x}+5)=3 \mathrm{x}-5\) then the solution set is (a) \(\\{5,-2\\}\) (b) \(\\{-5,2\\}\) (c) \(\\{-5,-2\\}\) (d) \(\\{5,2\\}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.