Chapter 3: Problem 213
The number of values of \(\mathrm{x}\) in the interval \([0,3 \pi]\) Satisfying the equation \(2 \sin ^{2} \mathrm{x}+5 \sin \mathrm{x}-3=0\) is (a) 6 (b) 1 (c) 2 (d) 4
Chapter 3: Problem 213
The number of values of \(\mathrm{x}\) in the interval \([0,3 \pi]\) Satisfying the equation \(2 \sin ^{2} \mathrm{x}+5 \sin \mathrm{x}-3=0\) is (a) 6 (b) 1 (c) 2 (d) 4
All the tools & learning materials you need for study success - in one app.
Get started for freeLet two numbers have arithmetic mean 9 and geometric mean 4 then these numbers are the roots of the quadratic equation (a) \(x^{2}+18 x+16=0\) (b) \(x^{2}-18 x+16=0\) (c) \(x^{2}+18 x-16=0\) (d) \(x^{2}-18 x-16=0\)
The number of real values of \(\mathrm{x}\) satisfying the equation \(3\left[x^{2}+\left(1 / x^{2}\right)\right]-16[x+(1 / x)]+26=0\) is (a) 1 (b) 2 (c) 3 (d) 4
If the roots of the quadratic equation \((2 \mathrm{k}+3) \mathrm{x}^{2}+2(\mathrm{k}+3)\) \(x+(k+5)=0\\{k \in R, k \neq\\{(-3) / 2\\}\\}\) are equal, then \(\mathrm{K}=\) (a) 1,6 (b) \(-1,-6\) (c) \(-1,6\) (d) \(1,-6\)
For the equation \(\ell \mathrm{x}^{2}+\mathrm{mx}+\mathrm{n} \pm 0, \ell \neq 0\) If \(\alpha \& \beta\) are roots of equation and \(m^{3}+\ell^{2} n+\ell n^{2}=3 \ell m n\) then (a) \(\alpha=\beta^{2}\) (b) \(\alpha^{3}=\beta\) (c) \(\alpha+\beta=\alpha \beta\) (d) \(\alpha \beta=1\)
If the product of roots of equation \(x^{2}-5 k x+4 e^{4 \log k}-3=0\) is 61 then \(\mathrm{k}\) is \(\ldots \ldots \ldots \ldots\) (a) 1 (b) 2 (c) 3 (d) 4
What do you think about this solution?
We value your feedback to improve our textbook solutions.