Chapter 3: Problem 218
If \(\alpha, \beta\) are roots of \(8 \mathrm{x}^{2}-3 \mathrm{x}+27=0\) then \(\left(\alpha^{2} / \beta\right)^{(1 / 3)}+\left(\beta^{2} / \alpha\right)^{(1 / 3)}=\) (a) \((1 / 3)\) (b) \((7 / 2)\) (c) 4 (d) \((1 / 4)\)
Chapter 3: Problem 218
If \(\alpha, \beta\) are roots of \(8 \mathrm{x}^{2}-3 \mathrm{x}+27=0\) then \(\left(\alpha^{2} / \beta\right)^{(1 / 3)}+\left(\beta^{2} / \alpha\right)^{(1 / 3)}=\) (a) \((1 / 3)\) (b) \((7 / 2)\) (c) 4 (d) \((1 / 4)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeSolution set of equation \(\mathrm{x}=\sqrt{[12+\sqrt{\\{} 12+\sqrt{(} 12)\\}] \ldots \ldots . . \text { up to }}\) \(\infty\) is (a) 4 (b) \(-4\) (c) 3 (d) \(-3\)
If \(\alpha \& \beta\) are roots of quadratic equation \(x^{2}+13 x+8=0\) then the value of \(\alpha^{4}+\beta^{4}=\) (a) 23281 (b) 23218 (c) 23128 (d) 23182
It one root of the equation \(\mathrm{x}^{2}+\mathrm{px}+12=0\) is 4 , while the equation \(\mathrm{x}^{2}+\mathrm{px}+\mathrm{q}=0\) has equal roots, then the value of \(\mathrm{q}\) is (a) \((49 / 4)\) (b) 12 (c) 3 (d) 4
\(a, b, \in R, a \neq b\) roots of equation \((a-b) x^{2}+5(a+b) x-2\) \((a-b)=0\) are (a) Real and distinct (b) Complex (c) real and equal (d) None
In \(\triangle \mathrm{ABC}, \mathrm{m} \angle \mathrm{C}=(\pi / 2)\) If \(\tan (\mathrm{A} / 2)\) and \(\tan (\mathrm{B} / 2)\) are the roots of \(a x^{2}+b x+c=0, a \neq 0\) then (a) \(b=a+c\) (b) \(b=c\) (c) \(c=a+b\) (d) \(a=b+c\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.