Chapter 3: Problem 218
If \(\alpha, \beta\) are roots of \(8 \mathrm{x}^{2}-3 \mathrm{x}+27=0\) then \(\left(\alpha^{2} / \beta\right)^{(1 / 3)}+\left(\beta^{2} / \alpha\right)^{(1 / 3)}=\) (a) \((1 / 3)\) (b) \((7 / 2)\) (c) 4 (d) \((1 / 4)\)
Chapter 3: Problem 218
If \(\alpha, \beta\) are roots of \(8 \mathrm{x}^{2}-3 \mathrm{x}+27=0\) then \(\left(\alpha^{2} / \beta\right)^{(1 / 3)}+\left(\beta^{2} / \alpha\right)^{(1 / 3)}=\) (a) \((1 / 3)\) (b) \((7 / 2)\) (c) 4 (d) \((1 / 4)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe solution set of equation \(3\left[x^{2}+\left(1 / x^{2}\right)\right]+16[x+(1 / x)]+26=0\) is (a) \([-1,\\{(-1) / 3\\},-3]\) (b) \([\overline{1,(1 / 3), 3}]\) (c) \([-1,(1 / 3), 3]\) (d) \([1,\\{(-1) / 3\\}, 3]\)
The number of real solution of the equation \(\left(1 / 27^{\mathrm{x}}\right)+\left(1 / 12^{\mathrm{x}}\right)=\left(1 / 2.8^{\mathrm{x}}\right)\) (a) 1 (b) 2 (b) 3 (d) 0
If \(\mathrm{b}^{2}=\) ac, equation \(\mathrm{ax}^{2}+2 \mathrm{bx}+\mathrm{c}=0\) and \(\mathrm{d} \mathrm{x}^{2}+2 \mathrm{ex}+\mathrm{f}=0\) have common roots then \((\mathrm{d} / \mathrm{a}),(\mathrm{e} / \mathrm{b}),(\mathrm{f} / \mathrm{c})\) are in (a) A.P. (b) G.P. (c) H.P. (d) None of these
If the difference of the roots of the equation \(x^{2}-p x+q=0\) is 1 then (a) \(p^{2}+4 q^{2}=(1+2 q)^{2}\) (b) \(\mathrm{q}^{2}+4 \mathrm{p}^{2}=(1+2 \mathrm{q})^{2}\) (c) \(p^{2}-4 q^{2}=(1+2 q)^{2}\) (d) \(q^{2}+4 p^{2}=(1-2 q)^{2}\)
The sum of the roots of the equation \(\mathrm{x}^{2}-3|\mathrm{x}|-10=0\) is (a) 3 (b) \(-3\) (c) \(-10\) (d) 0
What do you think about this solution?
We value your feedback to improve our textbook solutions.