Chapter 3: Problem 220
If \(0 \leq \mathrm{x} \leq \pi\) and \(16^{(\sin ) 2 \mathrm{x}}+16^{(\cos ) 2 \mathrm{x}}=10\) then \(\mathrm{x}=\) (a) \((\pi / 3)\) (b) \((\pi / 2)\) (c) \((\pi / 4)\) (d) \((3 \pi / 4)\)
Chapter 3: Problem 220
If \(0 \leq \mathrm{x} \leq \pi\) and \(16^{(\sin ) 2 \mathrm{x}}+16^{(\cos ) 2 \mathrm{x}}=10\) then \(\mathrm{x}=\) (a) \((\pi / 3)\) (b) \((\pi / 2)\) (c) \((\pi / 4)\) (d) \((3 \pi / 4)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe roots of equation a \((b-c) x^{2}+b(c-a) x+c(a-b)=0\) are equal, then \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are in (a) A. P. (b) G. P. (c) H. P. (d) None of these
If the roots of the equation \(x^{2}-b x+c=0\) be two consecutive integers then \(b^{2}-4 c=\) (a) \(-2\) (b) \(-3\) (c) 3 (d) 1
If the ratio of the roots of the quadratic equation \(2 x^{2}+16 x+3 k=0\) is \(4: 5\) then \(k=\) (a) \([(2560) /(243)]\) (b) \(\overline{[(243) /(2560)]}\) (c) \([(-2560) /(243)]\) (d) \([(-243) /(2560)]\)
If the roots of the equation \(b x^{2}+c x+a=0\) be imaginary then for all real values of \(x\) the expression \(3 b^{2} x^{2}+6 b c x+2 c^{2}\) is (a) \(<4 \mathrm{ab}\) (b) \(>-4 \mathrm{ab}\) (c) \(-4 \mathrm{ab}\) (d) \(>4 \mathrm{ab}\)
The solution set of the equation \((x+1)(x+2)(x+3)\) \((\mathrm{x}+4)=120\) is (a) \([-6,1\\{(-5 \pm \sqrt{39 i)} / 2\\}]\) (b) \([6,-1\\{(-5 \pm \sqrt{3} 9 \mathrm{i}) / 2\\}]\) (c) \([-6,-1\\{(-5 \pm \sqrt{3} 9 \mathrm{i}) / 2\\}]\) (d) \([6,1\\{(-5 \pm \sqrt{3} 9 \mathrm{i}) / 2\\}]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.