Chapter 3: Problem 220
If \(0 \leq \mathrm{x} \leq \pi\) and \(16^{(\sin ) 2 \mathrm{x}}+16^{(\cos ) 2 \mathrm{x}}=10\) then \(\mathrm{x}=\) (a) \((\pi / 3)\) (b) \((\pi / 2)\) (c) \((\pi / 4)\) (d) \((3 \pi / 4)\)
Chapter 3: Problem 220
If \(0 \leq \mathrm{x} \leq \pi\) and \(16^{(\sin ) 2 \mathrm{x}}+16^{(\cos ) 2 \mathrm{x}}=10\) then \(\mathrm{x}=\) (a) \((\pi / 3)\) (b) \((\pi / 2)\) (c) \((\pi / 4)\) (d) \((3 \pi / 4)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf the roots of the equation \(x^{2}-b x+c=0\) be two consecutive integers then \(b^{2}-4 c=\) (a) \(-2\) (b) \(-3\) (c) 3 (d) 1
The quadratic equations having the roots \([1 /\\{10-\sqrt{7} 2\\}] \&[1 /\\{10+6 \sqrt{2}\\}]\) is (a) \(28 \mathrm{x}^{2}-20 \mathrm{x}+1=0\) (b) \(20 \mathrm{x}^{2}-28 \mathrm{x}+1=0\) (c) \(x^{2}-20 x+28=0\) (d) \(x^{2}-28 x+20=0\)
If \(\mathrm{f}(\mathrm{x})=\mathrm{x}-[\mathrm{x}], \mathrm{x} \in \mathrm{R}-\\{0\\}\) where \([\mathrm{x}]=\) the greatest integer not greater than \(\mathrm{x}\), than number of solution \(\mathrm{f}(\mathrm{x})+\mathrm{f}(1 / \mathrm{x})=1 \ldots \ldots \ldots \ldots \ldots\) (a) 0 (b) 1 (c) 2 (d) infinite
If \(\alpha, \beta\) are roots of \(x^{2}+p x+q=0\) and \(x^{2 n}+p^{n} x^{n}+q^{n}=0\) and if \((\alpha / \beta)\) is one root of \(\mathrm{x}^{\mathrm{n}}+1+(\mathrm{x}+1)^{\mathrm{n}}=0\) then \(\mathrm{n}\) must be (a) even integer (b) odd integer (c) rational but not integer (d) None of these
The value of \(\mathrm{k}\) for which the quadratic equation \(\mathrm{k} \mathrm{x}^{2}+1=\mathrm{k} \mathrm{x}+3 \mathrm{x}-11 \mathrm{x}^{2}\) has real and equal roots are (a) \(\\{-11,-3\\}\) (b) \(\\{5,7\\}\) (c) \(\\{5,-7\\}\) (d) \(\\{-5,-7\\}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.