Chapter 3: Problem 225
The roots of the equation \((5-x)^{4}+(4-x)^{4}=(q-2 x)^{4}\) are (a) all imaginary (b) all real (c) Two real and two imaginary (d) None of these
Chapter 3: Problem 225
The roots of the equation \((5-x)^{4}+(4-x)^{4}=(q-2 x)^{4}\) are (a) all imaginary (b) all real (c) Two real and two imaginary (d) None of these
All the tools & learning materials you need for study success - in one app.
Get started for freeThe solution set of the Equation \(x^{4}-5 x^{3}-4 x^{2}-5 x+1=0\) is (a) \([3 \pm 2 \sqrt{2},\\{(-1 \pm \sqrt{3} \mathrm{i}) / 2\\}]\) (b) \([\\{(3 \pm \sqrt{2}) / 2\\},-1 \pm \sqrt{3} \mathrm{i}\\}\) (c) \([-3 \pm 2 \sqrt{2},\\{(1 \pm \sqrt{3} \mathrm{i}) / 2\\}]\) (d) \([\\{(-3 \pm 2 \sqrt{2}) / 2\\}, 1 \pm \sqrt{3 i}]\)
If \(\mathrm{f}(\mathrm{x})=\mathrm{x}-[\mathrm{x}], \mathrm{x} \in \mathrm{R}-\\{0\\}\) where \([\mathrm{x}]=\) the greatest integer not greater than \(\mathrm{x}\), than number of solution \(\mathrm{f}(\mathrm{x})+\mathrm{f}(1 / \mathrm{x})=1 \ldots \ldots \ldots \ldots \ldots\) (a) 0 (b) 1 (c) 2 (d) infinite
If \(\alpha, \beta\) are roots of equation \(a x^{2}+b x+c=0\) then value of \((\alpha a+b)^{-2}+(\beta a+b)^{-2}\) is (a) \(\left[\left(b^{2}-4 a c\right) /\left(a^{2} c^{2}\right)\right]\) (b) \(\left[\left(b^{2}-a c\right) /\left(a^{2} c^{2}\right)\right]\) (c) \(\left[\left(b^{2}-2 a c\right) /\left(a^{2} c^{2}\right)\right]\) (d) \(\left[\left(b^{2}+2 a c\right) /\left(a^{2} c^{2}\right)\right]\)
If \(\alpha \& \beta\) are roots of equation \(\mathrm{x}^{2}+\mathrm{x}+1=0\) then the equation whose roots are \(\alpha^{19} \& \alpha^{7}\) is \(\ldots \ldots \ldots\) (a) \(x^{2}-x+1=0\) (b) \(x^{2}+x+1=0\) (c) \(x^{2}+x+3=0\) (d) \(x^{2}-x+3=0\)
If the roots of the quadratic equation \((2 \mathrm{k}+3) \mathrm{x}^{2}+2(\mathrm{k}+3)\) \(x+(k+5)=0\\{k \in R, k \neq\\{(-3) / 2\\}\\}\) are equal, then \(\mathrm{K}=\) (a) 1,6 (b) \(-1,-6\) (c) \(-1,6\) (d) \(1,-6\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.