Chapter 3: Problem 225
The roots of the equation \((5-x)^{4}+(4-x)^{4}=(q-2 x)^{4}\) are (a) all imaginary (b) all real (c) Two real and two imaginary (d) None of these
Chapter 3: Problem 225
The roots of the equation \((5-x)^{4}+(4-x)^{4}=(q-2 x)^{4}\) are (a) all imaginary (b) all real (c) Two real and two imaginary (d) None of these
All the tools & learning materials you need for study success - in one app.
Get started for freeIf the roots of the equation \(b x^{2}+c x+a=0\) be imaginary then for all real values of \(x\) the expression \(3 b^{2} x^{2}+6 b c x+2 c^{2}\) is (a) \(<4 \mathrm{ab}\) (b) \(>-4 \mathrm{ab}\) (c) \(-4 \mathrm{ab}\) (d) \(>4 \mathrm{ab}\)
If \(\alpha \& \beta\) are roots of quadratic equation \(x^{2}+13 x+8=0\) then the value of \(\alpha^{4}+\beta^{4}=\) (a) 23281 (b) 23218 (c) 23128 (d) 23182
The value of \(\mathrm{k}\) for which the quadratic equation \(\mathrm{k} \mathrm{x}^{2}+1=\mathrm{k} \mathrm{x}+3 \mathrm{x}-11 \mathrm{x}^{2}\) has real and equal roots are (a) \(\\{-11,-3\\}\) (b) \(\\{5,7\\}\) (c) \(\\{5,-7\\}\) (d) \(\\{-5,-7\\}\)
If \(\alpha+\beta=5 \alpha^{2}=5 \alpha-3\) and \(\beta^{2}=5 \beta-3\) then the equation whose roots are \((\alpha / \beta)\) and \((\beta / \alpha)\) is (a) \(3 x^{2}-19 x+3=0\) (b) \(x^{2}+5 x-3=0\) (c) \(x^{2}-5 x+3=0\) (d) \(3 x^{2}-25 x+3=0\)
If the product of roots of equation \(x^{2}-5 k x+4 e^{4 \log k}-3=0\) is 61 then \(\mathrm{k}\) is \(\ldots \ldots \ldots \ldots\) (a) 1 (b) 2 (c) 3 (d) 4
What do you think about this solution?
We value your feedback to improve our textbook solutions.