Chapter 3: Problem 234
For \(x \in R, 3^{72}(1 / 3)^{x}(1 / 3)^{\sqrt{x}}>1\) then (a) \(x \in[0,64]\) (b) \(x \in(0,64)\) (c) \(x \in[0,64)\) (d) None of these
Chapter 3: Problem 234
For \(x \in R, 3^{72}(1 / 3)^{x}(1 / 3)^{\sqrt{x}}>1\) then (a) \(x \in[0,64]\) (b) \(x \in(0,64)\) (c) \(x \in[0,64)\) (d) None of these
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\alpha, \beta\) are roots of equation \(\mathrm{x}^{2}-\mathrm{p} \mathrm{x}+\mathrm{r}=0\) and \((\alpha / 2), \alpha \beta\) are roots of equation \(\mathrm{x}^{2}-\mathrm{qx}+\mathrm{r}=0\) then \(\mathrm{r}=\ldots \ldots\) (a) \((2 / 9)(\mathrm{p}-\mathrm{q})(2 \mathrm{q}-\mathrm{p})\) (b) \((2 / 9)(q-p)(2 p-q)\) (c) \((2 / 9)(q-2 p)(2 q-p)\) (d) \((2 / 9)(2 \mathrm{p}-\mathrm{q})(2 \mathrm{q}-\mathrm{p})\)
If 81 is the discriminant of \(2 \mathrm{x}^{2}+5 \mathrm{x}-\mathrm{k}=0\) then the value of \(\mathrm{k}\) is (a) 5 (b) 7 (c) \(-7\) (d) 2
The roots of the equation \((5-x)^{4}+(4-x)^{4}=(q-2 x)^{4}\) are (a) all imaginary (b) all real (c) Two real and two imaginary (d) None of these
If the product of roots of equation \(x^{2}-5 k x+4 e^{4 \log k}-3=0\) is 61 then \(\mathrm{k}\) is \(\ldots \ldots \ldots \ldots\) (a) 1 (b) 2 (c) 3 (d) 4
The sum of all the roots of \(|x-5|^{2}-|x-5|-6=0\) is (a) 10 (b) 6 (c) 0 (d) None
What do you think about this solution?
We value your feedback to improve our textbook solutions.