Chapter 4: Problem 245
Let \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) be such that \(\mathrm{b}(\mathrm{a}+\mathrm{c}) \neq 0\) If \(\left|\begin{array}{ccc}\mathrm{a} & \mathrm{a}+1 & \mathrm{a}-1 \\\ -\mathrm{b} & \mathrm{b}+1 & \mathrm{~b}-1 \\ \mathrm{c} & \mathrm{c}-1 & \mathrm{c}+1\end{array}\right|+\left|\begin{array}{lll}\mathrm{a}+1 & \mathrm{~b}+1 & \mathrm{c}-1 \\ \mathrm{a}-1 & \mathrm{~b}-1 & \mathrm{c}+1 \\\ (-1)^{\mathrm{n}+2} \mathrm{a} & (-1)^{\mathrm{n}+1} \mathrm{~b} & (-1)^{\mathrm{n}} \mathrm{c}\end{array}\right|=0\) then \(\mathrm{n}\) is (a) Zero (b) any even integer (c) any odd integer (d) any integer
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.