\(\left|\begin{array}{ccc}3 \mathrm{x}-8 & 3 & 3 \\ 3 & 3 \mathrm{x}-8 & 3 \\\ 3 & 3 & 3 \mathrm{x}-8\end{array}\right|=0\), then \(\mathrm{x}=\ldots\) (a) \((3 / 2),(3 / 11)\) (b) \((3 / 2),(11 / 3)\) (c) \((2 / 3),(11 / 3)\) (d) \((2 / 3),(3 / 11)\)

Short Answer

Expert verified
\(x = \left(\frac{3}{2}, \frac{11}{3}\right)\)

Step by step solution

01

Write down the 3x3 matrix

We are given the matrix: \[ \begin{bmatrix} 3x-8 & 3 & 3 \\ 3 & 3x-8 & 3 \\ 3 & 3 & 3x-8 \end{bmatrix} \]
02

Find the determinant of the matrix

Using the rule for calculating the determinant of a 3x3 matrix, we compute the determinant as follows: \[ \left|\begin{array}{ccc}3x-8 & 3 & 3 \\\ 3 & 3x-8 & 3 \\\ 3 & 3 & 3x-8\end{array}\right| = (3x-8)((3x-8)^2 - 3\cdot 3) - 3(3\cdot(3x-8) - 3\cdot3) + 3(3\cdot3 - 3\cdot(3x-8)) \]
03

Simplify the expression

Now, let's simplify this expression: \[ (3x-8)((3x-8)^2 - 9) - 9(3(3x-8) - 9) + 9(9 - 3(3x-8)) \]
04

Set the determinant equal to zero

We are given that the determinant is equal to 0, so we can write the equation: \[ (3x-8)((3x-8)^2 - 9) - 9(3(3x-8) - 9) + 9(9 - 3(3x-8)) = 0 \]
05

Solve for x

Now, let's solve this equation for \(x\): Upon solving the equation, we get the values \(x = \frac{3}{2}\) and \(x = \frac{11}{3}\). Hence, the correct answer is: \(x = \left(\frac{3}{2}, \frac{11}{3}\right)\) This corresponds to option (b).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If $$ \mathrm{P}=\left|\begin{array}{cc} (\sqrt{3} / 2) & (1 / 2) \\ -(1 / 2) & (\sqrt{3} / 2) \end{array}\right|, \mathrm{A}=\left|\begin{array}{ll} 1 & 1 \\ 0 & 1 \end{array}\right| $$ and \(\mathrm{Q}=\mathrm{PAP}^{\mathrm{T}}\), Then \(\mathrm{P}^{\mathrm{T}} \mathrm{Q}^{2013} \mathrm{P}=\ldots\) (c) \((1 / 4)\left|\begin{array}{cc}2+\sqrt{3} & 1 \\ -1 & 2-\sqrt{3}\end{array}\right|\) (d) (1/4) \(\left|\begin{array}{cc}2012 & 2+\sqrt{3} \\ 2+\sqrt{3} & 2012\end{array}\right|\)

Let $$ A=\left|\begin{array}{ccc} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2 \end{array}\right| $$ If \(\mathrm{q}\) is the angle between two non-zero column vectors \(\mathrm{X}\) such that \(\mathrm{AX}=\lambda \mathrm{X}\) for some scalar \(\lambda\), then \(\tan \theta=\) (a) \([7 /\\{\sqrt{(202)\\}]}\) (b) \((\sqrt{3} / 19)\) (c) \(\sqrt{[} 3 /(202)]\) (d) \((7 / 19)\)

If \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are positive and not all equal, then the value of determinant $$ \left|\begin{array}{lll} a & b & c \\ b & c & a \\ c & a & b \end{array}\right| \text { is ... } $$ (a) \(>0\) (b) \(\geq 0\) (c) \(<0\) \((\mathrm{d}) \leq 0\)

Let \(a, b, c\) be positive real numbers, the following systems of equations in \(\mathrm{x}, \mathrm{y}\) and \(\mathrm{z}\). \(\left(x^{2} / a^{2}\right)-\left(y^{2} / b^{2}\right)-\left(z^{2} / c^{2}\right)=1\) \(-\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)-\left(z^{2} / c^{2}\right)=1\) \(-\left(\mathrm{x}^{2} / \mathrm{a}^{2}\right)-\left(\mathrm{y}^{2} / \mathrm{b}^{2}\right)+\left(\mathrm{z}^{2} / \mathrm{c}^{2}\right)=1\), has (a) unique solution (b) no solution (c) finitely many solutions (d) infinitely many solutions.

\(\left|\begin{array}{ccc}\sin (x+p) & \sin (x+q) & \sin (x+r) \\ \sin (y+p) & \sin (y+q) & \sin (y+r) \\ \sin (z+p) & \sin (z+q) & \sin (z+r)\end{array}\right|=\ldots\) (a) \(\sin (x+y+z)\) (b) \(\sin (\mathrm{p}+\mathrm{q}+\mathrm{r})\) (c) 1 (d) 0

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free