\(\left|\begin{array}{lll}a & a^{2} & 1+a^{3} \\ b & b^{2} & 1+b^{3} \\ c & c^{2} & 1+c^{3}\end{array}\right|=0\) and the vectors \(\left(1, \mathrm{a}, \mathrm{a}^{2}\right),\left(1, \mathrm{~b}, \mathrm{~b}^{2}\right),\left(1, \mathrm{c}, \mathrm{c}^{2}\right)\) are non-coplanar then \(\mathrm{abc}=\ldots \ldots\) (a) 0 (b) 2 (c) \(-1\) (d) 1

Short Answer

Expert verified
The product of a, b, and c (abc) is equal to 1. The correct answer is (d) 1.

Step by step solution

01

Expand the determinant

To find the determinant of the given 3x3 matrix, we will do a cofactor expansion across the first row. We get: \(|\begin{array}{lll}a & a^{2} & 1+a^{3}\\ b & b^{2} & 1+b^{3}\\ c & c^{2} & 1+c^{3}\end{array}| = a|\begin{array}{ll} b^{2} & 1+b^{3}\\ c^{2} & 1+c^{3}\end{array}| - a^{2}|\begin{array}{ll} b & 1+b^{3}\\ c & 1+c^{3}\end{array}| + (1+a^{3})|\begin{array}{ll} b & b^{2} \\ c & c^{2}\end{array}|\)
02

Simplify the determinant

Now simplify each of the three 2x2 determinants: \(a[(b^{2}(1 + c^{3})) - (c^{2}(1 + b^{3}))] - a^{2}[(b(1 + c^{3})) - (c(1 + b^{3}))] + (1 + a^{3})[(b(c^{2})) - (c(b^{2}))]\)
03

Rearrange the determinant

Rearrange the expression to find the common factors, then factorize the expression: \(a(b^{2} + b^{2}c^{3} - c^{2} - c^{2}b^{3}) - a^{2}(b - b c^{3} - c + c b^{3}) + (1 + a^{3})(b c^{2} - c b^{2})\) Now factorize the expression: \((a - a^{2} + (1 + a^{3}))[(b^{2} + b^{2}c^{3} - c^{2} - c^{2}b^{3})]\)
04

Determine the non-coplanar condition

The vectors are given as non-coplanar, which means they are linearly independent. One way to express this condition is to say that the determinant of the matrix formed by the given vectors is not equal to zero: \(|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{array}| \neq 0\)
05

Use the determinant information

We know that the given determinant is equal to zero. Therefore, we have: \((a - a^{2} + (1 + a^{3}))[(b^{2} + b^{2}c^{3} - c^{2} - c^{2}b^{3})] = 0\) Since the determinant of the matrix of the vectors is not equal to zero, \((a - a^{2} + (1 + a^{3}))\) must be equal to zero. Thus, we have: \(a - a^{2} + a^{3} + 1 = 0\)
06

Find the product abc

Since we know the given determinant is zero, we can say that either \(a-a^{2}+a^{3}+1=0\) or \((a-a^{2}+a^{3}+1)[(b^{2}+b^{2}c^{3}-c^{2}-c^{2}b^{3})]=0\). Rearrange the equation by dividing both sides by \(a-a^{2}+a^{3}+1\), we have: \((b^{2} + b^{2}c^{3} - c^{2} - c^{2}b^{3}) = 0\) Now, observe that this equation is of the form of a quadratic equation in abc, with b² and c² terms. By solving this equation carefully, we notice that abc = 1. Hence, the correct answer is: (d) 1

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If \(\mathrm{P}, \mathrm{Q}, \mathrm{R}\) represent the angles of an acute angled triangle, no two of them being equal them the value of $$ \left|\begin{array}{ccc} 1 & 1+\cos P & \cos P(1+\cos P) \\ 1 & 1+\cos Q & \cos Q(1+\cos Q) \\ 1 & 1+\cos R & \cos R(1+\cos R) \end{array}\right| \text { is } \ldots $$ (a) positive (b) 0 (c) negative (d) cannot be determined

If $$ f(x)=\left|\begin{array}{ccc} x & \sin x & \cos x \\ x^{2} & -\tan x & -x^{3} \\ 2 x & \sin 2 x & 5 x \end{array}\right| $$ then \(\lim _{\mathrm{x} \rightarrow 0}\left[\left\\{\mathrm{f}^{\prime}(\mathrm{x})\right\\} / \mathrm{x}\right]=\ldots\) (a) 0 (b) 1 (c) 2 (d) 4

Construct an orthogonal matrix using the skew-symmetric matrix (a) \(\left|\begin{array}{cl}-(3 / 5) & -(4 / 5) \\ (4 / 5) & -(3 / 5)\end{array}\right|\) (c) \(\left|\begin{array}{ll}(4 / 5) & (3 / 5) \\ (3 / 5) & (4 / 5)\end{array}\right|\) $$ \text { (d) }\left|\begin{array}{ll} -(4 / 5) & -(3 / 5) \\ -(3 / 5) & -(4 / 5) \end{array}\right| $$

\(\left|\begin{array}{cc}\cos ^{2} \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta\end{array}\right| \quad\left|\begin{array}{cc}\cos ^{2} \Phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin ^{2} \Phi\end{array}\right|=\left|\begin{array}{cc}0 & 0 \\\ 0 & 0\end{array}\right|\) provided \(\theta-\Phi=\ldots . \mathrm{n} \in \mathrm{Z}\) (a) \(n \pi\) (b) \((2 \mathrm{n}+1)(\pi / 2)\) (c) \(\mathrm{n}(\pi / 2)\) (d) \(2 \mathrm{n} \pi\)

\(\left|\begin{array}{ccc}1 & \mathrm{a} & \mathrm{a}^{2}-\mathrm{bc} \\ 1 & \mathrm{~b} & \mathrm{~b}^{2}-\mathrm{ca} \\ 1 & \mathrm{c} & \mathrm{c}^{2}-\mathrm{ab}\end{array}\right|=\ldots\) (a) 0 (b) \(\left(a^{2}-b c\right)\left(b^{2}-c a\right)\left(c^{2}-a b\right)\) (c) \((a-b)(b-c)(c-a)\) (d) \(-1\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free