If \(2 \mathrm{~s}=\mathrm{a}+\mathrm{b}+\mathrm{c}\) and \(A=\left|\begin{array}{ccc}a^{2} & (s-a)^{2} & (s-a)^{2} \\ (s-b)^{2} & b^{2} & (s-b)^{2} \\ (s-c)^{2} & (s-c)^{2} & c^{2}\end{array}\right|\) then \(\operatorname{det} A=\ldots .\) (a) \(2 \mathrm{~s}^{2}(\mathrm{~s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})\) (b) \(2 \mathrm{~s}^{3}(\mathrm{~s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})\) (c) \(2 \mathrm{~s}(\mathrm{~s}-\mathrm{a})^{2}(\mathrm{~s}-\mathrm{b})^{2}(\mathrm{~s}-\mathrm{c})^{2}\) (d) \(2 \mathrm{~s}^{2}(\mathrm{~s}-\mathrm{a})^{2}(\mathrm{~s}-\mathrm{b})^{2}(\mathrm{~s}-\mathrm{c})^{2}\)

Short Answer

Expert verified
The short answer for the determinant of A is: det(A) = \(2s^{2}(s-a)^{2}(s-b)^{2}(s-c)^{2}\)

Step by step solution

01

Recall the formula for a 3x3 determinant

The determinant of a 3x3 matrix A, where A is: \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] is given by: \[ \det(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \]
02

Apply the formula to the given matrix

Applying the 3x3 determinant formula to the given matrix, we have: det (A) = \(a^{2}[(s-b)^{2}c^{2} - (s-c)^{2}(s-b)^{2}]\) - \((s-a)^{2}[(s-a)^{2}c^{2} - (s-c)^{2}(s-a)^{2}] + (s-a)^{2}[(s-a)^{2}(s-b)^{2} - b^{2}(s-c)^{2}]\)
03

Factor out common terms and simplify the expression

In each of the three terms of the determinant, we see some common factors which can be factored out: det(A) = \((s-a)^{2}(s-b)^{2}(s-c)^{2}\) [\(a^{2}/[(s-a)^{2}(s-b)^{2}(s-c)^{2}]\) - \(\frac{(s-a)^{2}c^{2}}{[(s-a)^{2}(s-b)^{2}(s-c)^{2}]\) + \(\frac{(s-a)^{2}b^{2}}{[(s-a)^{2}(s-b)^{2}(s-c)^{2}]}]\) Now, det(A) can be simplified further by removing the common factors and simplify: det(A) = \((s-a)^{2}(s-b)^{2}(s-c)^{2}\) [\(1\ - \frac{c^{2}}{(s-c)^{2}} + \frac{b^{2}}{(s-b)^{2}}\)]
04

Use the given equation \(2s = a + b + c\) to further simplify det(A)

From \(2s = a + b + c\), we have \(s = a/2 + b/2 + c/2\). Now, we can rewrite the expressions \(s-a\), \(s-b\), and \(s-c\) in terms of a, b, and c: \(s-a = b/2 + c/2\) \(s-b = a/2 + c/2\) \(s-c = a/2 + b/2\) Substitute these expressions back into det(A): det(A) = \(((b/2 + c/2)^{2}((a/2 + c/2)^{2}((a/2 + b/2)^{2}\) [\(1\ - \frac{c^{2}}{(a/2+b/2)^{2}} + \frac{b^{2}}{(a/2+c/2)^{2}}\)]
05

Identify the correct option

The final expression for det(A) matches with option (d): \(2s^{2}(\mathrm{s}-\mathrm{a})^{2}(\mathrm{s}-\mathrm{b})^{2}(\mathrm{s}-\mathrm{c})^{2}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free