Chapter 4: Problem 253
The homogeneous system of equations \(\left|\begin{array}{ccc}2 & \alpha+\beta+\gamma+\delta & \alpha \beta+\gamma \delta \\ \alpha+\beta+\gamma+\delta & \alpha(\alpha+\beta)(\gamma+\delta) & \alpha \beta(\gamma+\delta)+\gamma \delta(\alpha+\beta) \\ \alpha \beta+\gamma \delta & \alpha \beta(\gamma+\delta)+\gamma \delta(\alpha+\beta) & 2 \alpha \beta \gamma \delta\end{array}\right|\left|\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\\ \mathrm{z}\end{array}\right|=0\) has non-trivial solutions only if..... (a) \(\alpha+\beta+\gamma+\delta=0\) (b) for any \(\alpha, \beta, \gamma, \delta\) (c) \(\alpha \beta+\gamma \delta=0\) (d) \(\alpha \beta(\gamma+\delta)+\gamma \delta(\alpha+\beta)\)