The homogeneous system of equations \(\left|\begin{array}{ccc}2 & \alpha+\beta+\gamma+\delta & \alpha \beta+\gamma \delta \\ \alpha+\beta+\gamma+\delta & \alpha(\alpha+\beta)(\gamma+\delta) & \alpha \beta(\gamma+\delta)+\gamma \delta(\alpha+\beta) \\ \alpha \beta+\gamma \delta & \alpha \beta(\gamma+\delta)+\gamma \delta(\alpha+\beta) & 2 \alpha \beta \gamma \delta\end{array}\right|\left|\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\\ \mathrm{z}\end{array}\right|=0\) has non-trivial solutions only if..... (a) \(\alpha+\beta+\gamma+\delta=0\) (b) for any \(\alpha, \beta, \gamma, \delta\) (c) \(\alpha \beta+\gamma \delta=0\) (d) \(\alpha \beta(\gamma+\delta)+\gamma \delta(\alpha+\beta)\)

Short Answer

Expert verified
The given homogeneous system of equations has non-trivial solutions only if \(\alpha+\beta+\gamma+\delta = 0\).

Step by step solution

01

Write down the given matrix

The given matrix is: \(\begin{bmatrix} 2 & \alpha+\beta+\gamma+\delta & \alpha\beta+\gamma\delta \\ \alpha+\beta+\gamma+\delta & \alpha(\alpha+\beta)(\gamma+\delta) & \alpha\beta(\gamma+\delta)+\gamma\delta(\alpha+\beta) \\ \alpha\beta+\gamma\delta & \alpha\beta(\gamma+\delta)+\gamma\delta(\alpha+\beta) & 2\alpha\beta\gamma\delta \end{bmatrix}\)
02

Calculate the determinant of the matrix

Using the cofactor expansion method, let's compute the determinant of the given matrix: \(D = \begin{vmatrix} 2 & \alpha+\beta+\gamma+\delta & \alpha\beta+\gamma\delta \\ \alpha+\beta+\gamma+\delta & \alpha(\alpha+\beta)(\gamma+\delta) & \alpha\beta(\gamma+\delta)+\gamma\delta(\alpha+\beta) \\ \alpha\beta+\gamma\delta & \alpha\beta(\gamma+\delta)+\gamma\delta(\alpha+\beta) & 2\alpha\beta\gamma\delta \end{vmatrix}\) Expanding the determinant along the first row, we get: \(D = 2 * \begin{vmatrix} \alpha(\alpha+\beta)(\gamma+\delta) & \alpha\beta(\gamma+\delta)+\gamma\delta(\alpha+\beta) \\ \alpha\beta(\gamma+\delta)+\gamma\delta(\alpha+\beta) & 2\alpha\beta\gamma\delta \end{vmatrix} - (\alpha+\beta+\gamma+\delta) * \begin{vmatrix} \alpha+\beta+\gamma+\delta & \alpha\beta(\gamma+\delta)+\gamma\delta(\alpha+\beta) \\ \alpha\beta+\gamma\delta & 2\alpha\beta\gamma\delta \end{vmatrix} + (\alpha\beta+\gamma\delta) * \begin{vmatrix} \alpha+\beta+\gamma+\delta & \alpha(\alpha+\beta)(\gamma+\delta) \\ \alpha\beta+\gamma\delta & \alpha\beta(\gamma+\delta)+\gamma\delta(\alpha+\beta) \end{vmatrix}\) Now let's find the sub-determinants: - First Sub-Determinant: \(S1 = \begin{vmatrix} \alpha(\alpha+\beta)(\gamma+\delta) & \alpha\beta(\gamma+\delta)+\gamma\delta(\alpha+\beta) \\ \alpha\beta(\gamma+\delta)+\gamma\delta(\alpha+\beta) & 2\alpha\beta\gamma\delta \end{vmatrix} = 2\alpha\beta\gamma\delta(\alpha(\alpha+\beta)(\gamma+\delta) - (\alpha\beta(\gamma+\delta)+\gamma\delta(\alpha+\beta)))\) - Second Sub-Determinant: \(S2 = \begin{vmatrix} \alpha+\beta+\gamma+\delta & \alpha\beta(\gamma+\delta)+\gamma\delta(\alpha+\beta) \\ \alpha\beta+\gamma\delta & 2\alpha\beta\gamma\delta \end{vmatrix} = 2\alpha\beta\gamma\delta(\alpha+\beta+\gamma+\delta) - (\alpha\beta+\gamma\delta)(\alpha\beta(\gamma+\delta)+\gamma\delta(\alpha+\beta))\) - Third Sub-Determinant: \(S3 = \begin{vmatrix} \alpha+\beta+\gamma+\delta & \alpha(\alpha+\beta)(\gamma+\delta) \\ \alpha\beta+\gamma\delta & \alpha\beta(\gamma+\delta)+\gamma\delta(\alpha+\beta) \end{vmatrix} = (\alpha+\beta+\gamma+\delta)(\alpha\beta(\gamma+\delta)+\gamma\delta(\alpha+\beta)) - (\alpha\beta+\gamma\delta)\alpha(\alpha+\beta)(\gamma+\delta)\) Let's substitute these sub-determinants back in the full determinant expression: \(D = 2S1 - (\alpha+\beta+\gamma+\delta)S2 + (\alpha\beta+\gamma\delta)S3\) Now, we need to determine which options cause the determinant to be 0.
03

Check the given options

Using the determinant expression, let's check which of the options would lead to a non-trivial solution (i.e., determinant D being 0) Option (a): If \(\alpha+\beta+\gamma+\delta = 0\), then S2 becomes 0. Thus, D = 0, which leads to a non-trivial solution. Option (b): Since we have already found a specific condition for D = 0 in option (a), the statement in option (b) is not true. Option (c): If \(\alpha\beta+\gamma\delta = 0\), this only sets S1, S2, and S3 to 0 independently and does not guarantee D = 0. Option (d): This option is incorporated in the sub-determinant expressions; it doesn't guarantee a direct D = 0 by itself.
04

Final Answer

The given homogeneous system of equations has a non-trivial solution only if option (a) is true: \(\alpha+\beta+\gamma+\delta = 0\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(\left|\begin{array}{ccc}3 \mathrm{x}-8 & 3 & 3 \\ 3 & 3 \mathrm{x}-8 & 3 \\\ 3 & 3 & 3 \mathrm{x}-8\end{array}\right|=0\), then \(\mathrm{x}=\ldots\) (a) \((3 / 2),(3 / 11)\) (b) \((3 / 2),(11 / 3)\) (c) \((2 / 3),(11 / 3)\) (d) \((2 / 3),(3 / 11)\)

If \(\mathrm{D}_{1}=\left|\begin{array}{ccc}\mathrm{x} & \mathrm{a} & \mathrm{a} \\\ \mathrm{a} & \mathrm{x} & \mathrm{a} \\ \mathrm{a} & \mathrm{a} & \mathrm{x}\end{array}\right|\) and \(\mathrm{D}_{2}=\left|\begin{array}{ll}\mathrm{x} & \mathrm{a} \\ \mathrm{a} & \mathrm{x}\end{array}\right|\), then... (a) \(D_{1}=3\left(\mathrm{D}_{2}\right)^{(3 / 2)}\) (b) \(D_{1}=3 \mathrm{D}_{2}^{2}\) (c) \((\mathrm{d} / \mathrm{dx})\left(\mathrm{D}_{1}\right)=3 \mathrm{D}_{2}^{2}\) (d) \((\mathrm{d} / \mathrm{dx})\left(\mathrm{D}_{1}\right)=3 \mathrm{D}_{2}\)

If $$ A_{r}=\left|\begin{array}{cc} r & r-1 \\ r-1 & r \end{array}\right| $$ where \(\mathrm{r}\) is a natural number than the value of \(\left.\sqrt{[}^{2013} \sum_{r=1} A_{r}\right]\) is (a) 1 (b) 40 (c) 2012 (d) 2013

If \(\mathrm{A}=\left|\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right|\) then \(\mathrm{A}^{\mathrm{n}}+(\mathrm{n}-1) \mathrm{I}=\ldots \ldots\) (a) \(2^{\mathrm{n}-1} \mathrm{~A}\) (b) \(-\mathrm{n} \mathrm{A}\) (c) \(\mathrm{nA}\) (d) \((\mathrm{n}+1) \mathrm{A}\)

Let \(a, b, c\) be positive real numbers, the following systems of equations in \(\mathrm{x}, \mathrm{y}\) and \(\mathrm{z}\). \(\left(x^{2} / a^{2}\right)-\left(y^{2} / b^{2}\right)-\left(z^{2} / c^{2}\right)=1\) \(-\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)-\left(z^{2} / c^{2}\right)=1\) \(-\left(\mathrm{x}^{2} / \mathrm{a}^{2}\right)-\left(\mathrm{y}^{2} / \mathrm{b}^{2}\right)+\left(\mathrm{z}^{2} / \mathrm{c}^{2}\right)=1\), has (a) unique solution (b) no solution (c) finitely many solutions (d) infinitely many solutions.

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free