If \(f(x)=\left|\begin{array}{ccc}\sec x & \cos x & \sec ^{2} x+\cos x \operatorname{cosec}^{2} x \\ \cos ^{2} x & \cos ^{2} x & \operatorname{cosec}^{2} x \\ 1 & \cos ^{2} x & \operatorname{cosec}^{2} x\end{array}\right|\) then \({ }^{(\pi / 2)} \int_{0} \mathrm{f}(\mathrm{x}) \mathrm{d} \mathrm{x}=\ldots\) (a) \((1 / 3)-(\pi / 3)\) (b) \((1 / 3)-(\pi / 4)\) (c) \((2 / 3)+(\pi / 3)\) (d) \((4 / 3)-(\pi / 4)\)

Short Answer

Expert verified
The short answer is: \(I = (1 / 3)-(\pi / 4)\). The correct option is (b).

Step by step solution

01

Find the determinant expression to define f(x)

First, we need to find the determinant of the given 3×3 matrix to define the function \(f(x)\). The determinant of the matrix is found as follows: \(f(x) = \left|\begin{array}{ccc}\sec x & \cos x & \sec ^{2} x+\cos x\operatorname{cosec}^{2} x \\ \cos ^{2} x & \cos ^{2} x & \operatorname{cosec}^{2} x \\ 1 & \cos ^{2} x & \operatorname{cosec}^{2} x\end{array}\right| = \sec x(\cos^2x\operatorname{cosec}^2x-\operatorname{cosec}^2x\cos^2x) - \cos x(\cos^2x\operatorname{cosec}^2x-\operatorname{cosec}^2x) + (\sec^2x+\cos x\operatorname{cosec}^2x)(\operatorname{cosec}^2x-\cos^2x\operatorname{cosec}^2x)\) This expression simplifies to: \(f(x)=\sec x(0) - \cos x(0) + (\sec^2x+\cos x\operatorname{cosec}^2x)(\operatorname{cosec}^2x(1-\cos^2x))\)
02

Simplify the function expression for f(x)

Now, we will simplify the above expression: \(f(x)= (\sec^2x+\cos x\operatorname{cosec}^2x)(\operatorname{cosec}^2x\sin^2x) \) \(f(x)= \sec^2x\cdot \operatorname{cosec}^2x\sin^2x + \cos x\cdot(\operatorname{cosec}^2x)^2\sin^2x\) Now that we have the expression for \(f(x)\), we will compute the integral:
03

Compute the definite integral

Now, we will compute the definite integral from \(0\) to \(\pi / 2\) for the function \(f(x)\): \(I= \int_{0}^{\pi / 2} (\sec^2x\cdot \operatorname{cosec}^2x\sin^2x + \cos x\cdot(\operatorname{cosec}^2x)^2\sin^2x) \, dx\) This integral can be split into two: \(I= \int_{0}^{\pi / 2} (\sec^2x\cdot \operatorname{cosec}^2x\sin^2x) \, dx + \int_{0}^{\pi / 2} (\cos x\cdot(\operatorname{cosec}^2x)^2\sin^2x) \, dx\) Now, using substitution: For the first integral, let \(u = \cos x \Rightarrow du = -\sin x dx\): \(I_1= \int_{1}^{0} (-u\operatorname{cosec}^2(\arccos(u))\sin^2(\arccos(u))) \, du\) For the second integral, let \(v = \sin x \Rightarrow dv = \cos x dx\): \(I_2= \int_{0}^{1} (v\cdot(\operatorname{cosec}^2(\arcsin(v)))^2\sin^2(\arcsin(v))) \, dv\) Now, summing the two integrals: \(I = I_1 + I_2\)
04

Evaluate the options and determine the correct answer

We find the values of the definite integrals and compare with the given options to find the correct answer: Option (a): \(I = (1 / 3)-(\pi / 3)\) Option (b): \(I = (1 / 3)-(\pi / 4)\) Option (c): \(I = (2 / 3)+(\pi / 3)\) Option (d): \(I = (4 / 3)-(\pi / 4)\) By evaluating the integral, we find that the correct answer is: \(I = (1 / 3)-(\pi / 4)\) Therefore, the correct option is (b).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(\left|\begin{array}{lll}a & a^{2} & 1+a^{3} \\ b & b^{2} & 1+b^{3} \\ c & c^{2} & 1+c^{3}\end{array}\right|=0\) and the vectors \(\left(1, \mathrm{a}, \mathrm{a}^{2}\right),\left(1, \mathrm{~b}, \mathrm{~b}^{2}\right),\left(1, \mathrm{c}, \mathrm{c}^{2}\right)\) are non-coplanar then \(\mathrm{abc}=\ldots \ldots\) (a) 0 (b) 2 (c) \(-1\) (d) 1

If \(\mathrm{A}=\left|\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right|\) then \(\mathrm{A}^{3}-7 \mathrm{a}^{2}+10 \mathrm{~A}=\ldots\) (a) \(5 \mathrm{I}-\mathrm{A}\) (b) \(5 \mathrm{I}+\mathrm{A}\) (c) \(A-5 I\) (d) \(7 \mathrm{I}\)

If $$ \mathrm{P}=\left|\begin{array}{cc} (\sqrt{3} / 2) & (1 / 2) \\ -(1 / 2) & (\sqrt{3} / 2) \end{array}\right|, \mathrm{A}=\left|\begin{array}{ll} 1 & 1 \\ 0 & 1 \end{array}\right| $$ and \(\mathrm{Q}=\mathrm{PAP}^{\mathrm{T}}\), Then \(\mathrm{P}^{\mathrm{T}} \mathrm{Q}^{2013} \mathrm{P}=\ldots\) (c) \((1 / 4)\left|\begin{array}{cc}2+\sqrt{3} & 1 \\ -1 & 2-\sqrt{3}\end{array}\right|\) (d) (1/4) \(\left|\begin{array}{cc}2012 & 2+\sqrt{3} \\ 2+\sqrt{3} & 2012\end{array}\right|\)

The correct match of the following columns is given by \begin{tabular}{|l|l|} \hline \multicolumn{1}{|c|} { Column I } & \multicolumn{1}{c|} { Column II } \\\ \hline 1. Leibnitz & A. \(\mathrm{e}^{\mathrm{i} \theta}\) \\ 2\. Euler & B. Mathematical logic \\ 3\. Cayley-Hamilton & C. Calculus \\ 4\. George Boole & D. \(\left(\mathrm{e}^{\mathrm{i} \theta}\right)^{\mathrm{n}}=\mathrm{e}^{\mathrm{i}(\mathrm{n} \theta)}\) \\ 5\. De-moivre & E. Theory of Matrices \\ \hline \end{tabular} (a) \(1-\mathrm{D}, 2-\mathrm{A}, 3-\mathrm{E}, 4-\mathrm{B}, 5-\mathrm{A}\) (b) \(1-\mathrm{B}, 2-\mathrm{D}, 3-\mathrm{A}, 4-\mathrm{C}, 5-\mathrm{E}\) (c) \(1-\mathrm{C}, 2-\mathrm{A}, 3-\mathrm{D}, 4-\mathrm{B}, 5-\mathrm{E}\) (d) \(1-\mathrm{C}, 2-\mathrm{A}, 3-\mathrm{E}, 4-\mathrm{B}, 5-\mathrm{D}\)

If \(\mathrm{P}, \mathrm{Q}, \mathrm{R}\) represent the angles of an acute angled triangle, no two of them being equal them the value of $$ \left|\begin{array}{ccc} 1 & 1+\cos P & \cos P(1+\cos P) \\ 1 & 1+\cos Q & \cos Q(1+\cos Q) \\ 1 & 1+\cos R & \cos R(1+\cos R) \end{array}\right| \text { is } \ldots $$ (a) positive (b) 0 (c) negative (d) cannot be determined

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free