The value of determinant \(\left|\begin{array}{ccc}\cos ^{2}[(\pi / 2)+x] & \cos ^{2}[(3 \pi / 2)+x] & \cos ^{2}[(5 \pi / 2)+x] \\ \cos [(\pi / 2)+x] & \cos [(3 \pi / 2)+x] & \cos [(5 \pi / 2)+x] \\ \cos [(\pi / 2)-x] & \cos [(3 \pi / 2)-x] & \cos [(5 \pi / 2)-x]\end{array}\right|\) is \(\ldots \ldots\) (a) 0 (b) \(\cos ^{2}[3 \mathrm{x}-(9 \pi / 2)]\) (c) \(\sin ^{2}[(3 \pi / 2)+\mathrm{x}]\) (d) \(\cos ^{2}[(15 \pi / 2)-\mathrm{x}]\)

Short Answer

Expert verified
The value of the determinant is \(\boxed{\textbf{(a) } 0}\).

Step by step solution

01

Write down the determinant in LaTeX form

To make the working more comfortable, we write down the determinant in LaTeX form, then proceed as follows: \[ D = \left|\begin{array}{ccc} \cos^{2}\left(\frac{\pi}{2}+x\right) & \cos^{2}\left(\frac{3\pi}{2}+x\right) & \cos^{2}\left(\frac{5\pi}{2}+x\right) \\ \cos\left(\frac{\pi}{2}+x\right) & \cos\left(\frac{3\pi}{2}+x\right) & \cos\left(\frac{5\pi}{2}+x\right) \\ \cos\left(\frac{\pi}{2}-x\right) & \cos\left(\frac{3\pi}{2}-x\right) & \cos\left(\frac{5\pi}{2}-x\right) \end{array}\right| \]
02

Simplify the trigonometric expressions

Now we will use some trigonometric identities to simplify the given expressions. \[\cos\left(\frac{\pi}{2} + x\right) = -\sin x\] \[\cos\left(\frac{3\pi}{2} + x\right) = \sin x\] \[\cos\left(\frac{5\pi}{2} + x\right) = -\sin x\] \[\cos^{2}\left(\frac{\pi}{2} + x\right) = \sin^{2} x\] \[\cos^{2}\left(\frac{3\pi}{2} + x\right) = \sin^{2} x\] \[\cos^{2}\left(\frac{5\pi}{2} + x\right) = \sin^{2} x\]
03

Substitute the simplified expressions

Substitute these simplified expressions back into the determinant. \[D = \left|\begin{array}{ccc} \sin^2 x & \sin^2 x & \sin^2 x \\ -\sin x & \sin x & -\sin x \\ \cos x & -\cos x & \cos x \end{array}\right|\]
04

Evaluate the determinant

To evaluate the determinant, we will use the first row expansion. \[ D = \sin^2 x \left|\begin{array}{cc} \sin x & -\sin x \\ -\cos x & \cos x \end{array}\right| - \sin^2 x \left|\begin{array}{cc} -\sin x & -\sin x \\ \cos x & \cos x \end{array}\right| + \sin^2 x \left|\begin{array}{cc} -\sin x & \sin x \\ \cos x & -\cos x \end{array}\right| \] Now expand the 2x2 determinants. \[ D = \sin^2 x ((\sin x)(\cos x) - (-\sin x)(-\cos x)) - \sin^2 x ((-\sin x)(\cos x) - (-\sin x)(\cos x)) + \sin^2 x ((-\sin x)(-cos x) - (\cos x)(\sin x)) \] \[ D = \sin^2 x (0) - \sin^2 x (0) + \sin^2 x (0) \]
05

Final Answer

Now we get: \[D = 0\] Thus, the value of the determinant is 0, \[\boxed{\textbf{(a) } 0}\].

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free