Chapter 4: Problem 273
The matrix $$ \left|\begin{array}{ccc} a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b \end{array}\right| $$ is singular if \(\ldots \ldots\) (a) \(a-b=0\) (b) \(a+b=0\) (c) \(a+b+c=0\) (d) \(a=0\)
Chapter 4: Problem 273
The matrix $$ \left|\begin{array}{ccc} a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b \end{array}\right| $$ is singular if \(\ldots \ldots\) (a) \(a-b=0\) (b) \(a+b=0\) (c) \(a+b+c=0\) (d) \(a=0\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe set of natural numbers \(\mathrm{N}\) is partitioned into arrays of rows and columns in the form of matrices as \(\mathrm{M}_{1}=|1|, \mathrm{M}_{2}=\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|, \mathrm{M}_{3}=\left|\begin{array}{ccc}6 & 7 & 8 \\ 9 & 10 & 11 \\ 12 & 13 & 14\end{array}\right|, \ldots, \mathrm{M}_{\mathrm{n}}=[\ldots]\) and so on. Find the sum of elements of the diagonal in \(\mathrm{M}_{6}\). (a) 144 (b) 441 (c) 321 (d) 461
If $$ A_{r}=\left|\begin{array}{cc} r & r-1 \\ r-1 & r \end{array}\right| $$ where \(\mathrm{r}\) is a natural number than the value of \(\left.\sqrt{[}^{2013} \sum_{r=1} A_{r}\right]\) is (a) 1 (b) 40 (c) 2012 (d) 2013
Let $$ A=\left|\begin{array}{ccc} 4 & 4 \mathrm{k} & \mathrm{k} \\ 0 & \mathrm{k} & 4 \mathrm{k} \\ 0 & 0 & 4 \end{array}\right| $$ If \(\operatorname{det}\left(\mathrm{A}^{2}\right)=16\) then \(|\mathrm{k}|\) is \(\ldots \ldots\) (a) 1 (b) \((1 / 4)\) (c) 4 (d) \(4^{2}\)
If $$ \mathrm{A}=\left|\begin{array}{ccc} 1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0 \end{array}\right| $$ and \(\mathrm{B}=(\operatorname{adj} \mathrm{A}), \mathrm{C}=5 \mathrm{~A}\) then \([(\mid\) adj \(\mathrm{B} \mid) /|\mathrm{C}|]=\) (a) 5 (b) 1 (c) 3 \((1 / 5)\)
If \(0 \leq[\mathrm{x}]<2,-1 \leq[\mathrm{y}]<1,1 \leq[\mathrm{z}]<3([\cdot]\) denotes the greatest integer function) then the maximum value of determinant $$ \mathrm{D}=\left|\begin{array}{ccc} {[\mathrm{x}]+1} & {[\mathrm{y}]} & {[\mathrm{z}]} \\ {[\mathrm{x}]} & {[\mathrm{y}]+1} & {[\mathrm{z}]} \\ {[\mathrm{x}]} & {[\mathrm{y}]} & {[\mathrm{z}]+1} \end{array}\right| \text { is } $$ (a) 6 (b) 2 (c) 4 (d) 8
What do you think about this solution?
We value your feedback to improve our textbook solutions.