The matrix $$ \left|\begin{array}{ccc} a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b \end{array}\right| $$ is singular if \(\ldots \ldots\) (a) \(a-b=0\) (b) \(a+b=0\) (c) \(a+b+c=0\) (d) \(a=0\)

Short Answer

Expert verified
The matrix is singular if \(a+b+c=0\).

Step by step solution

01

Write down the given matrix

We are given the matrix: $$ A = \left|\begin{array}{ccc} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{array}\right| $$
02

Calculate the determinant of the matrix

To calculate the determinant, we can use the following formula: $$ \det(A) = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31}) $$ Plug in the values from the given matrix: $$ \det(A) = (a-b-c)((b-c-a)(c-a-b) - 2b\cdot 2c) - 2a(2b(c-a-b) - 2b\cdot 2c) + 2a(2b\cdot 2c - (b-c-a)2c) $$
03

Simplify and find the condition for determinant to be zero

To simplify and find when the determinant is zero, expand and factorize the terms: \begin{align*} \det(A) &= (a-b-c)((b^2-c^2-ab-ac+bc) - 4bc) \\ &\quad -2a(-4c+2b+2c-(a-c)(-4c)) \\ &\quad +2a(-4c+2b-(a-b)(-2c)) \\ \end{align*} Now, factorize and combine similar terms: \begin{align*} \det(A) &= (a-b-c)(b^2-c^2-4bc-ab+ac+bc) + 8a^2c-8abc \\ &= (a-b-c)(b^2-5bc+c^2-ab+ac+bc) + 8a^2c-8abc \\ \end{align*} Observe that (b^2-5bc+c^2) can be written as (b-c)^2, and the expression inside the parentheses can be written as a sum of two squares: \begin{align*} \det(A) &= (a-b-c)((b-c)^2 - (a-c)(a-b)) + 8a^2c-8abc \\ \end{align*} The determinant will be zero if the following condition holds: $$ (a-b-c)((b-c)^2 - (a-c)(a-b)) + 8a^2c-8abc = 0 $$
04

Compare with the given options

Now, we will compare the condition obtained in Step 3 with the given options: (a) \(a-b=0\): This condition does not match our result. (b) \(a+b=0\): This condition also does not match our result. (c) \(a+b+c=0\): This condition matches the result obtained in Step 3, because if \(a+b+c=0\), then \(a-b-c = 0\) and therefore \(\det(A) = 0\). (d) \(a=0\): This condition does not match our result. Thus, the correct option is (c) \(a+b+c=0\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The set of natural numbers \(\mathrm{N}\) is partitioned into arrays of rows and columns in the form of matrices as \(\mathrm{M}_{1}=|1|, \mathrm{M}_{2}=\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|, \mathrm{M}_{3}=\left|\begin{array}{ccc}6 & 7 & 8 \\ 9 & 10 & 11 \\ 12 & 13 & 14\end{array}\right|, \ldots, \mathrm{M}_{\mathrm{n}}=[\ldots]\) and so on. Find the sum of elements of the diagonal in \(\mathrm{M}_{6}\). (a) 144 (b) 441 (c) 321 (d) 461

If $$ A_{r}=\left|\begin{array}{cc} r & r-1 \\ r-1 & r \end{array}\right| $$ where \(\mathrm{r}\) is a natural number than the value of \(\left.\sqrt{[}^{2013} \sum_{r=1} A_{r}\right]\) is (a) 1 (b) 40 (c) 2012 (d) 2013

Let $$ A=\left|\begin{array}{ccc} 4 & 4 \mathrm{k} & \mathrm{k} \\ 0 & \mathrm{k} & 4 \mathrm{k} \\ 0 & 0 & 4 \end{array}\right| $$ If \(\operatorname{det}\left(\mathrm{A}^{2}\right)=16\) then \(|\mathrm{k}|\) is \(\ldots \ldots\) (a) 1 (b) \((1 / 4)\) (c) 4 (d) \(4^{2}\)

If $$ \mathrm{A}=\left|\begin{array}{ccc} 1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0 \end{array}\right| $$ and \(\mathrm{B}=(\operatorname{adj} \mathrm{A}), \mathrm{C}=5 \mathrm{~A}\) then \([(\mid\) adj \(\mathrm{B} \mid) /|\mathrm{C}|]=\) (a) 5 (b) 1 (c) 3 \((1 / 5)\)

If \(0 \leq[\mathrm{x}]<2,-1 \leq[\mathrm{y}]<1,1 \leq[\mathrm{z}]<3([\cdot]\) denotes the greatest integer function) then the maximum value of determinant $$ \mathrm{D}=\left|\begin{array}{ccc} {[\mathrm{x}]+1} & {[\mathrm{y}]} & {[\mathrm{z}]} \\ {[\mathrm{x}]} & {[\mathrm{y}]+1} & {[\mathrm{z}]} \\ {[\mathrm{x}]} & {[\mathrm{y}]} & {[\mathrm{z}]+1} \end{array}\right| \text { is } $$ (a) 6 (b) 2 (c) 4 (d) 8

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free