Chapter 4: Problem 278
If the equations \(a(y+z)=x, b(z+x)=y, c(x+y)=z\) have non trivial solutions, then \([1 /(1+a)]+[1 /(1+b)]+[1 /(1+c)]=\ldots .\) (a) 1 (b) 2 (c) - 1 (d) \(-2\)
Chapter 4: Problem 278
If the equations \(a(y+z)=x, b(z+x)=y, c(x+y)=z\) have non trivial solutions, then \([1 /(1+a)]+[1 /(1+b)]+[1 /(1+c)]=\ldots .\) (a) 1 (b) 2 (c) - 1 (d) \(-2\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(2 \mathrm{~s}=\mathrm{a}+\mathrm{b}+\mathrm{c}\) and \(A=\left|\begin{array}{ccc}a^{2} & (s-a)^{2} & (s-a)^{2} \\ (s-b)^{2} & b^{2} & (s-b)^{2} \\ (s-c)^{2} & (s-c)^{2} & c^{2}\end{array}\right|\) then \(\operatorname{det} A=\ldots .\) (a) \(2 \mathrm{~s}^{2}(\mathrm{~s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})\) (b) \(2 \mathrm{~s}^{3}(\mathrm{~s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})\) (c) \(2 \mathrm{~s}(\mathrm{~s}-\mathrm{a})^{2}(\mathrm{~s}-\mathrm{b})^{2}(\mathrm{~s}-\mathrm{c})^{2}\) (d) \(2 \mathrm{~s}^{2}(\mathrm{~s}-\mathrm{a})^{2}(\mathrm{~s}-\mathrm{b})^{2}(\mathrm{~s}-\mathrm{c})^{2}\)
If $$ A=\left|\begin{array}{ccc} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{array}\right| $$ then \(\operatorname{adj} A=\) (a) \(\mathrm{A}\) (b) \(\mathrm{A}^{\mathrm{T}}\) (c) \(3 \mathrm{~A}\) (d) \(3 \mathrm{~A}^{\mathrm{T}}\)
If \(\mathrm{A}=\left|\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right|\) then \(\mathrm{A}^{3}-7 \mathrm{a}^{2}+10 \mathrm{~A}=\ldots\) (a) \(5 \mathrm{I}-\mathrm{A}\) (b) \(5 \mathrm{I}+\mathrm{A}\) (c) \(A-5 I\) (d) \(7 \mathrm{I}\)
Suppose a matrix A satisfies \(\mathrm{A}^{2}-5 \mathrm{~A}+7 \mathrm{I}=0 .\) If \(\mathrm{A}^{5}=\mathrm{aA}+\mathrm{bI}\) then the value of \(2 \mathrm{a}-3 \mathrm{~b}\) must be (a) 4135 (b) 1435 (c) 1453 (d) 3145
If \(\mathrm{A}=\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|\) \(8 \mathrm{~A}^{-4}=\) (a) \(145 \overline{\mathrm{A}^{-1}-27 \mathrm{I}}\) (b) \(27 \mathrm{I}-145 \mathrm{~A}^{-1}\) (c) \(29 \mathrm{~A}^{-1}+9 \mathrm{I}\) (d) \(145 \mathrm{~A}^{-1}+27 \mathrm{I}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.