Chapter 4: Problem 280
If the equations \(x+3 y+z=0,2 x-y-z=0\) \(\mathrm{kx}+2 \mathrm{y}+3 \mathrm{z}=0\) have non-trivial solution then \(\mathrm{k}=\) (a) \((13 / 2)\) (b) \((9 / 2)\) (c) \(-(15 / 2)\) (d) \(-(13 / 2)\)
Chapter 4: Problem 280
If the equations \(x+3 y+z=0,2 x-y-z=0\) \(\mathrm{kx}+2 \mathrm{y}+3 \mathrm{z}=0\) have non-trivial solution then \(\mathrm{k}=\) (a) \((13 / 2)\) (b) \((9 / 2)\) (c) \(-(15 / 2)\) (d) \(-(13 / 2)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are positive and not all equal, then the value of determinant $$ \left|\begin{array}{lll} a & b & c \\ b & c & a \\ c & a & b \end{array}\right| \text { is ... } $$ (a) \(>0\) (b) \(\geq 0\) (c) \(<0\) \((\mathrm{d}) \leq 0\)
Let \(a, b, c\) be positive real numbers, the following systems of equations in \(\mathrm{x}, \mathrm{y}\) and \(\mathrm{z}\). \(\left(x^{2} / a^{2}\right)-\left(y^{2} / b^{2}\right)-\left(z^{2} / c^{2}\right)=1\) \(-\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)-\left(z^{2} / c^{2}\right)=1\) \(-\left(\mathrm{x}^{2} / \mathrm{a}^{2}\right)-\left(\mathrm{y}^{2} / \mathrm{b}^{2}\right)+\left(\mathrm{z}^{2} / \mathrm{c}^{2}\right)=1\), has (a) unique solution (b) no solution (c) finitely many solutions (d) infinitely many solutions.
The value of \(\alpha, \beta, \gamma\) when $$ \mathrm{A}=\left|\begin{array}{ccc} 0 & 2 \beta & \gamma \\ \alpha & \beta & -\gamma \\ \alpha & -\beta & \gamma \end{array}\right| $$ is orthogonal are \(\ldots .\) (a) \(\pm(1 / \sqrt{2}), \pm(1 / \sqrt{6}), \pm(1 / \sqrt{2})\) (b) \(\pm(1 / \sqrt{3}), \pm(1 / \sqrt{2}), \pm(1 / \sqrt{6})\) (c) \(\pm(1 / \sqrt{2}), \pm(1 / \sqrt{6}), \pm(1 / \sqrt{3})\) (d) \(\pm(1 / \sqrt{2}), \pm(1 / \sqrt{2}), \pm(1 / \sqrt{2})\)
If \(1, \omega, \omega^{2}\) are cube roots of unity, then $$ \left|\begin{array}{ccc} a & a^{2} & a^{3}-1 \\ a^{\omega} & a^{2 \omega} & a^{3 \omega}-1 \\ a^{(\omega) 2} & a^{2(\omega) 2} & a^{3(\omega) 2}-1 \end{array}\right|=\ldots \ldots $$ (a) 0 (b) a (c) \(a^{2}\) (d) \(\mathrm{a}^{3}\)
If $$ \mathrm{A}=\left|\begin{array}{lll} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right| $$ then \(\mathrm{A}^{2013}=\) \(\begin{array}{ll}\text { (a) } 3^{2013} \mathrm{~A} & \text { (b) }-3^{2012} \mathrm{I}\end{array}\) (c) \(3^{2012} \mathrm{~A}\) (d) \(3^{1006} \mathrm{~A}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.