Chapter 4: Problem 282
If the system of equations \(x+a y=0, a z+y=0, a x+z=0\) has infinite number of solutions then \(\mathrm{a}=\) (a) 0 (b) 1 (c) \(-1\) (d) \(-2\)
Chapter 4: Problem 282
If the system of equations \(x+a y=0, a z+y=0, a x+z=0\) has infinite number of solutions then \(\mathrm{a}=\) (a) 0 (b) 1 (c) \(-1\) (d) \(-2\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(f(x)=\left|\begin{array}{ccc}\sec x & \cos x & \sec ^{2} x+\cos x \operatorname{cosec}^{2} x \\ \cos ^{2} x & \cos ^{2} x & \operatorname{cosec}^{2} x \\ 1 & \cos ^{2} x & \operatorname{cosec}^{2} x\end{array}\right|\) then \({ }^{(\pi / 2)} \int_{0} \mathrm{f}(\mathrm{x}) \mathrm{d} \mathrm{x}=\ldots\) (a) \((1 / 3)-(\pi / 3)\) (b) \((1 / 3)-(\pi / 4)\) (c) \((2 / 3)+(\pi / 3)\) (d) \((4 / 3)-(\pi / 4)\)
If $$ \mathrm{A}=\left|\begin{array}{cc} 3 & 1 \\ -9 & -3 \end{array}\right| $$ then \(\mathrm{I}+2 \mathrm{~A}+3 \mathrm{~A}^{2}+\ldots \ldots \infty=\ldots\) (a) \(\mid\)\begin{tabular}{cc|c|cc|c|cc|c|cc} 9 & 1 & (b) & 4 & 1 & (c) & \(\begin{gathered}7 & 2 \\ -18 & -5\end{gathered} \mid\) (d) \(\left|\begin{array}{cc}7 & 2 \\ -5 & -18\end{array}\right|\) \end{tabular}
Let $$ A=\left|\begin{array}{ccc} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2 \end{array}\right| $$ If \(\mathrm{q}\) is the angle between two non-zero column vectors \(\mathrm{X}\) such that \(\mathrm{AX}=\lambda \mathrm{X}\) for some scalar \(\lambda\), then \(\tan \theta=\) (a) \([7 /\\{\sqrt{(202)\\}]}\) (b) \((\sqrt{3} / 19)\) (c) \(\sqrt{[} 3 /(202)]\) (d) \((7 / 19)\)
\(\left|\begin{array}{ccc}\sqrt{1} 1+\sqrt{3} & \sqrt{2} 0 & \sqrt{5} \\\ \sqrt{15}+\sqrt{2} 2 & \sqrt{25} & \sqrt{10} \\ 3+\sqrt{5} 5 & \sqrt{1} 5 & \sqrt{25}\end{array}\right|=\ldots \ldots\) (a) \(5(5 \sqrt{3}-3 \sqrt{2})\) (b) \(5(3 \sqrt{2}+5 \sqrt{3})\) (c) \(-5(5 \sqrt{3}+3 \sqrt{2})\) (d) \(5(3 \sqrt{2}-5 \sqrt{3})\)
If $$ A=\left|\begin{array}{cc} {[(-1+i \sqrt{3}) /(2 i)]} & {[(-1-i \sqrt{3}) /(2 i)]} \\ {[(1+i \sqrt{3}) /(2 i)]} & {[(1-i \sqrt{3}) /(2 i)]} \end{array}\right| $$ \(\mathrm{i}=\sqrt{(-1)}\) and \(\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+2\) then \(\mathrm{f}(\mathrm{A})=\) (a) $$ \left|\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right| $$ (b) \([(3-\mathrm{i} \sqrt{3}) / 2]\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|\) (c) \([(5-\mathrm{t} \sqrt{3}) / 2]\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|\) (d) \(\quad(2+\mathrm{i} \sqrt{3})\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.