Chapter 4: Problem 285
If $$ A=\left|\begin{array}{lll} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{array}\right| $$ then \(\mathrm{A}^{-1}=\ldots\) (a) \(\mathrm{A}\) (b) \(\mathrm{A}^{2}\) (c) \(\mathrm{A}^{3}\) (d) \(\mathrm{A}^{4}\)
Chapter 4: Problem 285
If $$ A=\left|\begin{array}{lll} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{array}\right| $$ then \(\mathrm{A}^{-1}=\ldots\) (a) \(\mathrm{A}\) (b) \(\mathrm{A}^{2}\) (c) \(\mathrm{A}^{3}\) (d) \(\mathrm{A}^{4}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe value of \(\left|\begin{array}{cc}\log _{3} 1024 & \log _{8} 3 \\ \log _{3} 8 & \log _{4} 9\end{array}\right| \times\left|\begin{array}{ll}\log _{2} 3 & \log _{4} 3 \\ \log _{3} 4 & \log _{3} 4\end{array}\right|=\ldots\) (a) 6 (b) 9 (c) 10 (d) 12
Let \(P\) be a non-singular matrix and \(1+P+P^{2}+\ldots .+P^{n}=O\), (O denotes the null matrix) then \(\mathrm{P}^{-1}=\) (a) 0 (b) \(\mathrm{P}\) (c) \(\mathrm{P}^{\mathrm{n}}\) (d) 1
If \(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots\) are in GP, then $$ \left|\begin{array}{ccc} \log a_{n} & \log a_{n+1} & \log a_{n+2} \\ \log a_{n+3} & \log a_{n+4} & \log a_{n+5} \\ \log a_{n+6} & \log a_{n+7} & \log a_{n+8} \end{array}\right|=\ldots \ldots $$ (a) 0 (b) 1 (c) 2 (d) 4
If \(\mathrm{P}, \mathrm{Q}, \mathrm{R}\) represent the angles of an acute angled triangle, no two of them being equal them the value of $$ \left|\begin{array}{ccc} 1 & 1+\cos P & \cos P(1+\cos P) \\ 1 & 1+\cos Q & \cos Q(1+\cos Q) \\ 1 & 1+\cos R & \cos R(1+\cos R) \end{array}\right| \text { is } \ldots $$ (a) positive (b) 0 (c) negative (d) cannot be determined
If $$ A=\left|\begin{array}{ll} -2 & 3 \\ -1 & 1 \end{array}\right| $$ then \(\mathrm{A}^{3}=\ldots\) (a)I (b) \(\mathrm{O}\) (c) \(-\mathrm{A}\) (d) \(\mathrm{A}+\mathrm{I}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.