The homogeneous system of equations
\(\left|\begin{array}{ccc}2 & \alpha+\beta+\gamma+\delta & \alpha \beta+\gamma
\delta \\ \alpha+\beta+\gamma+\delta & \alpha(\alpha+\beta)(\gamma+\delta) &
\alpha \beta(\gamma+\delta)+\gamma \delta(\alpha+\beta) \\ \alpha
\beta+\gamma \delta & \alpha \beta(\gamma+\delta)+\gamma \delta(\alpha+\beta)
& 2 \alpha \beta \gamma
\delta\end{array}\right|\left|\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\\
\mathrm{z}\end{array}\right|=0\)
has non-trivial solutions only if.....
(a) \(\alpha+\beta+\gamma+\delta=0\)
(b) for any \(\alpha, \beta, \gamma, \delta\)
(c) \(\alpha \beta+\gamma \delta=0\)
(d) \(\alpha \beta(\gamma+\delta)+\gamma \delta(\alpha+\beta)\)