if $$ A=\left|\begin{array}{ccc} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{array}\right| $$ then \(\mathrm{A}^{3}=\) (a) 0 (b) \(\mathrm{A}^{\mathrm{T}}\) (c) I (d) \(\mathrm{A}^{-1}\)

Short Answer

Expert verified
The matrix \(A^3 = A\), which implies that \(A^2\) is the inverse of \(A\), i.e., \(A^2 = A^{-1}\). Therefore, the correct answer is option (d).

Step by step solution

01

Find A^2

First, we need to calculate A^2. To do this, we will multiply matrix A with itself: $$ A^2 = A \times A $$
02

Perform the matrix multiplication for A^2

To perform the matrix multiplication for A^2, follow the normal matrix multiplication procedure: $$ A^2=\left[\begin{array}{ccc} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{array}\right]\times\left[\begin{array}{ccc} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{array}\right] $$ $$ A^2= \left[\begin{array}{ccc} 1(1) + (-1)(2) + 1(1) & 1(-1) + (-1)(-1) + 1(0) & 1(1) + (-1)(0) + 1(0) \\ 2(1) + (-1)(2) + 0(1) & 2(-1) + (-1)(-1) + 0(0) & 2(1) + (-1)(0) + 0(0) \\ 1(1) + 0(2) + 0(1) & 1(-1) + 0(-1) + 0(0) & 1(1) + 0(0) + 0(0) \end{array}\right] $$ $$ A^2=\left[\begin{array}{ccc} 0 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & -1 & 1 \end{array}\right] $$
03

Find A^3

Now that we have found A^2, we can find A^3 by multiplying A^2 by A: $$ A^3 = A^2 \times A $$
04

Perform the matrix multiplication for A^3

To perform the matrix multiplication, follow the normal matrix multiplication procedure: $$ A^3=\left[\begin{array}{ccc} 0 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & -1 & 1 \end{array}\right]\times\left[\begin{array}{ccc} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{array}\right] $$ $$ A^3= \left[\begin{array}{ccc} 0(1) + 1(2) + 1(1) & 0(-1) + 1(-1) + 1(0) & 0(1) + 1(0) + 1(0) \\ 0(1) + 1(2) + 2(1) & 0(-1) + 1(-1) + 2(0) & 0(1) + 1(0) + 2(0) \\ 1(1) + (-1)(2) + 1(1) & 1(-1) + (-1)(-1) + 1(0) & 1(1) + (-1)(0) + 1(0) \end{array}\right] $$ $$ A^3=\left[\begin{array}{ccc} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{array}\right] $$ Now, we can compare the obtained matrix A^3 with the given options: (a) 0: The matrix A^3 is not a zero matrix. (b) \(A^T\): The transpose of A is: $$ A^T = \left[\begin{matrix} 1 & 2 & 1 \\ -1 & -1 & 0 \\ 1 & 0 & 0 \end{matrix}\right] $$ which is not equal to A^3. (c) I (identity matrix): The identity matrix is $$ I = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] $$ A^3 is not equal to the identity matrix. (d) \(A^{-1}\) (inverse of A): It can be observed that A^3 = A, which implies that A^2 is the inverse of A (i.e., \(A^2 = A^{-1}\)). Therefore, the correct answer is option (d).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If $$ \mathrm{A}=\left|\begin{array}{lll} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right| $$ then \(\mathrm{A}^{2013}=\) \(\begin{array}{ll}\text { (a) } 3^{2013} \mathrm{~A} & \text { (b) }-3^{2012} \mathrm{I}\end{array}\) (c) \(3^{2012} \mathrm{~A}\) (d) \(3^{1006} \mathrm{~A}\)

\(\left|\begin{array}{ccc}\sqrt{1} 1+\sqrt{3} & \sqrt{2} 0 & \sqrt{5} \\\ \sqrt{15}+\sqrt{2} 2 & \sqrt{25} & \sqrt{10} \\ 3+\sqrt{5} 5 & \sqrt{1} 5 & \sqrt{25}\end{array}\right|=\ldots \ldots\) (a) \(5(5 \sqrt{3}-3 \sqrt{2})\) (b) \(5(3 \sqrt{2}+5 \sqrt{3})\) (c) \(-5(5 \sqrt{3}+3 \sqrt{2})\) (d) \(5(3 \sqrt{2}-5 \sqrt{3})\)

Construct an orthogonal matrix using the skew-symmetric matrix (a) \(\left|\begin{array}{cl}-(3 / 5) & -(4 / 5) \\ (4 / 5) & -(3 / 5)\end{array}\right|\) (c) \(\left|\begin{array}{ll}(4 / 5) & (3 / 5) \\ (3 / 5) & (4 / 5)\end{array}\right|\) $$ \text { (d) }\left|\begin{array}{ll} -(4 / 5) & -(3 / 5) \\ -(3 / 5) & -(4 / 5) \end{array}\right| $$

The inverse element of $$ \left|\begin{array}{lll} y & y & y \\ y & y & y \\ y & y & y \end{array}\right| $$ in group $$ M=|| \begin{array}{ccc} x & x & x \\ x & x & x \\ x & x & x \end{array}|/ x \in R, x \neq 0, \quad I=(1 / 3)| \begin{array}{lll} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}|| \text { w.r.t } $$ matrix multiplication is (a) \(\begin{array}{lll}(1 / \mathrm{y}) & (1 / \mathrm{y}) & (1 / \mathrm{y}) \\\ (1 / \mathrm{y}) & (1 / \mathrm{y}) & (1 / \mathrm{y}) \\ (1 / \mathrm{y}) & (1 / \mathrm{y}) & (1 / \mathrm{y})\end{array} \mid\) (b) \(\left|\begin{array}{lll}(1 / 3 y) & (1 / 3 y) & (1 / 3 y) \\ (1 / 3 y) & (1 / 3 y) & (1 / 3 y) \\ (1 / 3 y) & (1 / 3 y) & (1 / 3 y)\end{array}\right|\) (c) \(\left|\begin{array}{lll}(1 / 6 \mathrm{y}) & (1 / 6 \mathrm{y}) & (1 / 6 \mathrm{y}) \\ (1 / 6 \mathrm{y}) & (1 / 6 \mathrm{y}) & (1 / 6 \mathrm{y}) \\\ (1 / 6 \mathrm{y}) & (1 / 6 \mathrm{y}) & (1 / 6 \mathrm{y})\end{array}\right|\) (d) \(\left|\begin{array}{lll}(1 / 9 \mathrm{y}) & (1 / 9 \mathrm{y}) & (1 / 9 \mathrm{y}) \\ (1 / 9 \mathrm{y}) & (1 / 9 \mathrm{y}) & (1 / 9 \mathrm{y}) \\\ (1 / 9 \mathrm{y}) & (1 / 9 \mathrm{y}) & (1 / 9 \mathrm{y})\end{array}\right|\)

For what value of \(k\) the following system of linear equations \(x+2 y-z=0\) \(3 x+(k+7) y-3 z=0\) \(2 \mathrm{x}+4 \mathrm{y}+(\mathrm{k}-3) \mathrm{z}=0\) possesses a non-trivial solution. (a) 1 (b) 0 (c) 2 (d) \(-2\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free