Chapter 4: Problem 291
if $$ A=\left|\begin{array}{ccc} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{array}\right| $$ then \(\mathrm{A}^{3}=\) (a) 0 (b) \(\mathrm{A}^{\mathrm{T}}\) (c) I (d) \(\mathrm{A}^{-1}\)
Chapter 4: Problem 291
if $$ A=\left|\begin{array}{ccc} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{array}\right| $$ then \(\mathrm{A}^{3}=\) (a) 0 (b) \(\mathrm{A}^{\mathrm{T}}\) (c) I (d) \(\mathrm{A}^{-1}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf $$ \mathrm{A}=\left|\begin{array}{lll} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right| $$ then \(\mathrm{A}^{2013}=\) \(\begin{array}{ll}\text { (a) } 3^{2013} \mathrm{~A} & \text { (b) }-3^{2012} \mathrm{I}\end{array}\) (c) \(3^{2012} \mathrm{~A}\) (d) \(3^{1006} \mathrm{~A}\)
\(\left|\begin{array}{ccc}\sqrt{1} 1+\sqrt{3} & \sqrt{2} 0 & \sqrt{5} \\\ \sqrt{15}+\sqrt{2} 2 & \sqrt{25} & \sqrt{10} \\ 3+\sqrt{5} 5 & \sqrt{1} 5 & \sqrt{25}\end{array}\right|=\ldots \ldots\) (a) \(5(5 \sqrt{3}-3 \sqrt{2})\) (b) \(5(3 \sqrt{2}+5 \sqrt{3})\) (c) \(-5(5 \sqrt{3}+3 \sqrt{2})\) (d) \(5(3 \sqrt{2}-5 \sqrt{3})\)
Construct an orthogonal matrix using the skew-symmetric matrix (a) \(\left|\begin{array}{cl}-(3 / 5) & -(4 / 5) \\ (4 / 5) & -(3 / 5)\end{array}\right|\) (c) \(\left|\begin{array}{ll}(4 / 5) & (3 / 5) \\ (3 / 5) & (4 / 5)\end{array}\right|\) $$ \text { (d) }\left|\begin{array}{ll} -(4 / 5) & -(3 / 5) \\ -(3 / 5) & -(4 / 5) \end{array}\right| $$
The inverse element of $$ \left|\begin{array}{lll} y & y & y \\ y & y & y \\ y & y & y \end{array}\right| $$ in group $$ M=|| \begin{array}{ccc} x & x & x \\ x & x & x \\ x & x & x \end{array}|/ x \in R, x \neq 0, \quad I=(1 / 3)| \begin{array}{lll} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}|| \text { w.r.t } $$ matrix multiplication is (a) \(\begin{array}{lll}(1 / \mathrm{y}) & (1 / \mathrm{y}) & (1 / \mathrm{y}) \\\ (1 / \mathrm{y}) & (1 / \mathrm{y}) & (1 / \mathrm{y}) \\ (1 / \mathrm{y}) & (1 / \mathrm{y}) & (1 / \mathrm{y})\end{array} \mid\) (b) \(\left|\begin{array}{lll}(1 / 3 y) & (1 / 3 y) & (1 / 3 y) \\ (1 / 3 y) & (1 / 3 y) & (1 / 3 y) \\ (1 / 3 y) & (1 / 3 y) & (1 / 3 y)\end{array}\right|\) (c) \(\left|\begin{array}{lll}(1 / 6 \mathrm{y}) & (1 / 6 \mathrm{y}) & (1 / 6 \mathrm{y}) \\ (1 / 6 \mathrm{y}) & (1 / 6 \mathrm{y}) & (1 / 6 \mathrm{y}) \\\ (1 / 6 \mathrm{y}) & (1 / 6 \mathrm{y}) & (1 / 6 \mathrm{y})\end{array}\right|\) (d) \(\left|\begin{array}{lll}(1 / 9 \mathrm{y}) & (1 / 9 \mathrm{y}) & (1 / 9 \mathrm{y}) \\ (1 / 9 \mathrm{y}) & (1 / 9 \mathrm{y}) & (1 / 9 \mathrm{y}) \\\ (1 / 9 \mathrm{y}) & (1 / 9 \mathrm{y}) & (1 / 9 \mathrm{y})\end{array}\right|\)
For what value of \(k\) the following system of linear equations \(x+2 y-z=0\) \(3 x+(k+7) y-3 z=0\) \(2 \mathrm{x}+4 \mathrm{y}+(\mathrm{k}-3) \mathrm{z}=0\) possesses a non-trivial solution. (a) 1 (b) 0 (c) 2 (d) \(-2\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.