If $$ A=\left|\begin{array}{cc} {[(-1+i \sqrt{3}) /(2 i)]} & {[(-1-i \sqrt{3}) /(2 i)]} \\ {[(1+i \sqrt{3}) /(2 i)]} & {[(1-i \sqrt{3}) /(2 i)]} \end{array}\right| $$ \(\mathrm{i}=\sqrt{(-1)}\) and \(\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+2\) then \(\mathrm{f}(\mathrm{A})=\) (a) $$ \left|\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right| $$ (b) \([(3-\mathrm{i} \sqrt{3}) / 2]\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|\) (c) \([(5-\mathrm{t} \sqrt{3}) / 2]\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|\) (d) \(\quad(2+\mathrm{i} \sqrt{3})\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|\)

Short Answer

Expert verified
The correct answer to this question is not among the given options, as the result of applying the function f(x) to the determinant of matrix A is the scalar value 3, and all the options are matrices.

Step by step solution

01

Simplify matrix A

First, simplify the matrix A using the fact that i = √(-1): $$ A=\left|\begin{array}{cc} {[-\frac{1+i \sqrt{3}}{2i}]} & {[-\frac{1-i \sqrt{3}}{2i}]} \\ {[\frac{1+i \sqrt{3}}{2i}]} & {[\frac{1-i \sqrt{3}}{2i}]} \end{array}\right| $$
02

Calculate the determinant of matrix A

We will now calculate the determinant of the simplified matrix A using the formula: det(A) = ad - bc, where a, b, c, and d are the elements of the matrix: $$ \det(A)=\left(-\frac{1+i \sqrt{3}}{2i}\right)\left(\frac{1-i \sqrt{3}}{2i}\right)-\left(-\frac{1-i \sqrt{3}}{2i}\right)\left(\frac{1+i \sqrt{3}}{2i}\right) $$ Simplify the expression by multiplying the terms: $$ \det(A)=\frac{(1+i \sqrt{3})(1-i \sqrt{3})}{4i^2}+\frac{(1-i \sqrt{3})(1+i \sqrt{3})}{4i^2} $$ Now, expand and simplify the terms further: $$ \det(A)=\frac{[(1 + i\sqrt{3} - i\sqrt{3} -3) + (1 - i\sqrt{3} + i\sqrt{3} -3)]}{4i^2} $$ $$ \det(A)=\frac{-4}{4(-1)}=1 $$ So, the determinant of matrix A is 1.
03

Apply function f(x) to the determinant

Now apply the function f(x) = x^2 + 2 to the determinant: $$ f(\det(A))=f(1)=1^2+2=3 $$
04

Compare the result with the given options

The result from Step 3 is 3. We will now match this with the four given options: (a) $$ \left|\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right| $$ This option is the identity matrix, which is not equal to the scalar value 3. (b) \([(3-i \sqrt{3}) / 2]\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|\) This option is also a matrix but we found a scalar value. (c) \([(5-t \sqrt{3}) / 2]\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|\) This option is also a matrix but we found a scalar value. (d) \((2+i \sqrt{3})\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|\) This option is also a matrix but we found a scalar value. None of the options match the answer.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If \([\mathrm{x}]\) is the greatest integer less than or equal to \(\mathrm{x}\), then the determinant's value of the matrix. $$ \left|\begin{array}{ccc} {[\mathrm{e}]} & {[\pi]} & {\left[\pi^{2}-6\right]} \\ {[\pi]} & {\left[\pi^{2}-6\right]} & {[\mathrm{e}]} \\ {\left[\pi^{2}-6\right]} & {[\mathrm{e}]} & {[\pi]} \end{array}\right| \text { is } \ldots $$ (a) 8 (b) 0 (c) 1 \(-8\)

If $$ A=\left|\begin{array}{ccc} 3 a & b & c \\ b & 3 c & a \\ c & a & 3 b \end{array}\right| $$ \(\mathrm{a}, \mathrm{b}, \mathrm{c} \notin \mathrm{R}, \mathrm{abc}=1\) and \(\mathrm{AA}^{\mathrm{T}}=641\) and \(|\mathrm{A}|>0\), then \(\left(a^{3}+b^{3}+c^{3}\right)=\) (a) 343 (b) 729 (c) 256 (d) 512

If \(\mathrm{A}=\left|\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right|\) then \(\mathrm{A}^{\mathrm{n}}+(\mathrm{n}-1) \mathrm{I}=\ldots \ldots\) (a) \(2^{\mathrm{n}-1} \mathrm{~A}\) (b) \(-\mathrm{n} \mathrm{A}\) (c) \(\mathrm{nA}\) (d) \((\mathrm{n}+1) \mathrm{A}\)

If \(\mathrm{A}=\left|\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & \mathrm{a} & 1\end{array}\right|, \mathrm{A}^{-1}=\left|\begin{array}{ccc}(1 / 2) & -(1 / 2) & (1 / 2) \\ -4 & 3 & \mathrm{c} \\ (5 / 2) & -(3 / 2) & (1 / 2)\end{array}\right|\) then (a) \(\mathrm{a}=2, \mathrm{c}=-(1 / 2)\) (b) \(\mathrm{a}=1, \mathrm{c}=-1\) (c) \(\mathrm{a}=-1, \mathrm{c}=1\) (d) \(\mathrm{a}=(1 / 2), \mathrm{c}=(1 / 2)\)

If \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are positive and not all equal, then the value of determinant $$ \left|\begin{array}{lll} a & b & c \\ b & c & a \\ c & a & b \end{array}\right| \text { is ... } $$ (a) \(>0\) (b) \(\geq 0\) (c) \(<0\) \((\mathrm{d}) \leq 0\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free