If $$ A=\left|\begin{array}{ccc} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & x \end{array}\right| $$ is an idempotent matrix, then \(\mathrm{x}\) is equal to \(\begin{array}{llll}\text { (a) }-1 & \text { (b) }-5 & \text { (c) }-4 & \text { (d) }-3\end{array}\)

Short Answer

Expert verified
None of the given answer choices are valid, as there is no solution for x that makes A an idempotent matrix.

Step by step solution

01

Find the matrix product A * A

To find A * A, we'll multiply the matrix A by itself. This involves taking the dot product of each row of the left matrix with each column of the right matrix, and placing the result in the corresponding cell of the resulting matrix. Here's the calculation: \(A * A = \left(\begin{array}{ccc} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & x \end{array}\right) \left(\begin{array}{ccc} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & x \end{array}\right)\) \(A * A = \left(\begin{array}{ccc} (2 * 2) + (-2 * -1) + (-4 * 1) & (2 * -2)+(-2 * 3) +(-4 * -2) & (2 * -4 )+(-2 * 4) +(-4 * x) \\ (-1 * 2) + (3 * -1 ) + (4 * 1) & (-1 * -2) + (3 * 3) + (4 * -2) & (-1 * -4) + (3 * 4) + (4 * x) \\ (1 * 2) + (-2 * -1) + (x * 1) & (1 * -2) + (-2 * 3) + (x * -2) & (1 * -4) + (-2 * 4) + (x * x) \end{array}\right)\) After calculating all these dot products, we get: \(A * A = \left(\begin{array}{ccc} 6 & 0 & -12-4x \\ -1 & 13 & 0 \\ 3 & -8 & -12+x^2 \end{array}\right)\)
02

Set up the equation for x

Since A * A = A for an idempotent matrix, we can compare the elements of the resulting matrix product to the original matrix A. Let's look at the element in the last column of the first row. In the original matrix, this element is -4. In the product matrix (A * A), this element is -12-4x. We can set up an equation: -4 = -12-4x
03

Solve for x

Now, we'll solve this equation for x: -4 = -12 - 4x Add 12 to both sides: 8 = -4x Now, divide both sides by -4: x = -2 However, notice that when we plug x back into A, A and A * A are not equal, which means that there is no solution for x that makes A an idempotent matrix and none of the given answer choices are valid. The answer choice should include the option "not possible" or "no solution."

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(\left|\begin{array}{ccc}(b+c)^{2} & a^{2} & a^{2} \\ b^{2} & (c+a)^{2} & b^{2} \\ c^{2} & c^{2} & (a+b)^{2}\end{array}\right|=k(a b c)(a+b+c)^{3}\), then \(k=\ldots\) (a) (b) - 1 (c) \(-2\) (d) 2

If the system of equations \(x+a y=0, a z+y=0, a x+z=0\) has infinite number of solutions then \(\mathrm{a}=\) (a) 0 (b) 1 (c) \(-1\) (d) \(-2\)

Let $$ \left|\begin{array}{ccc} 1+\mathrm{x} & \mathrm{x} & \mathrm{x}^{2} \\ \mathrm{x} & 1+\mathrm{x} & \mathrm{x}^{2} \\ \mathrm{x}^{2} & \mathrm{x} & 1+\mathrm{x} \end{array}\right|=\mathrm{ax}^{5}+\mathrm{bx}^{4}+\mathrm{cx}^{3}+\mathrm{d} \mathrm{x}^{2}+\mathrm{ex}+\mathrm{f} $$ then match the following columns: \begin{tabular}{|l|l|} \hline \multicolumn{1}{|c|} { Column I } & Column II \\ \hline \(1 .\) The Value of \(\mathrm{f}=\ldots .\) & A. 0 \\ 2\. The value of \(\mathrm{e}=\ldots .\) & B. 1 \\ 3\. The value of \(\mathrm{a}+\mathrm{c}=\ldots .\) & C. \(-1\) \\ \(4 .\) The value of \(\mathrm{b}+\mathrm{d}=\ldots .\) & D. 3 \\ \hline \end{tabular} (a) \(1-\mathrm{C}, 2-\mathrm{D}, 3-\mathrm{A}, 4-\mathrm{B}\) (b) \(1-\mathrm{A}, 2-\mathrm{B}, 3-\mathrm{B}, 4-\mathrm{C}\) (c) \(1-\mathrm{B}, 2-\mathrm{D}, 3-\mathrm{C}, 4-\mathrm{B}\) (d) \(1-\mathrm{D}, 2-\mathrm{C}, 3-\mathrm{D}, 4-\mathrm{A}\)

If $$ A=\left|\begin{array}{ccc} 3 a & b & c \\ b & 3 c & a \\ c & a & 3 b \end{array}\right| $$ \(\mathrm{a}, \mathrm{b}, \mathrm{c} \notin \mathrm{R}, \mathrm{abc}=1\) and \(\mathrm{AA}^{\mathrm{T}}=641\) and \(|\mathrm{A}|>0\), then \(\left(a^{3}+b^{3}+c^{3}\right)=\) (a) 343 (b) 729 (c) 256 (d) 512

If $$ \mathrm{P}=\left|\begin{array}{cc} (\sqrt{3} / 2) & (1 / 2) \\ -(1 / 2) & (\sqrt{3} / 2) \end{array}\right|, \mathrm{A}=\left|\begin{array}{ll} 1 & 1 \\ 0 & 1 \end{array}\right| $$ and \(\mathrm{Q}=\mathrm{PAP}^{\mathrm{T}}\), Then \(\mathrm{P}^{\mathrm{T}} \mathrm{Q}^{2013} \mathrm{P}=\ldots\) (c) \((1 / 4)\left|\begin{array}{cc}2+\sqrt{3} & 1 \\ -1 & 2-\sqrt{3}\end{array}\right|\) (d) (1/4) \(\left|\begin{array}{cc}2012 & 2+\sqrt{3} \\ 2+\sqrt{3} & 2012\end{array}\right|\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free